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Abstract— In modern driver assistance systems digital maps
have proven usefulness for many applications in providing infor-
mation on the environment around the host vehicle. For future
ADAS, relevant to traffic safety, high precision digital maps
including detailed information about the course of individual
lanes are needed.
We introduce a new method for the generation of highly
accurate digital maps including lane specific information based
on a wide range of raw data sources. We show that the
use of arc splines as a representation model of individual
lanes is advantageous for both computational efficiency and
accuracy. Therefore, this method is useful for a wide variety of
applications using digital maps to enrich driving comfort and
traffic safety.

I. INTRODUCTION

Today’s advanced driver assistance systems (ADAS) ben-
efit from precise and up-to-date digital maps of the en-
vironment around the host vehicle. For map-based self-
localization strategies, where map features are associated
with sensor measurements in order to derive the vehicle’s
position, high precision digital maps including information
on the individual lanes are needed. Safety systems like
curve speed control applications also ask for high-accuracy
lane maps when extracting information on the upcoming
curve to determine the maximum speed at which the vehicle
may drive safely. Furthermore, situation analysis and map-
matching tasks, which imply the association of objects to
lanes, require detailed road course information next to the
ego-vehicle. Finally, separated lane information could enrich
driving comfort applications like navigation systems.

The amount of data and its level of detail, stored in digital
map databases, are enriched permanently. High precision
localization hardware like RTK-GPS enables the registration
of the surroundings by using different sensors. The captured
data must be processed in order to find an efficient represen-
tation of the relevant environment structures.

A. Motivation

According to the German road construction act (cf.
[1], [2]) many turns in rural areas are constructed using
clothoidal parts between line and arc segments to provide
a smooth steering phase when passing the lane section.
This is achieved by the property of the clothoid curve,
whose curvature varies linearly with its arc length. However,
clothoids show certain disadvantageous properties, which
will be discussed later on.
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In general, a representation of the lane is preferable, that
shows invariance to offset determination, rotation, translation
and scaling. Basically, all aforementioned applications have
in common that, for a given point, the calculation of a best
approximating point on a lane must be calculated. This is
necessary for issues like map matching, map-based self-
localization and the extraction of curve information on some
lane. Due to the high frequency of this computation appear-
ing in real-time driver assistance systems, the calculation
must be as efficient as possible.

In this work we focus on the representation of lanes in
digital maps. Analogously, representations for road markings,
curbstones and guardrails can be calculated using the same
approach. More precisely we discuss different curve models
and finally propose an approach for the generation of high
accuracy road maps using arc splines.

B. Related Work

The most simple but commonly used representation for
lanes in digital maps is based on polygons (cf. [3], [4],
[5]). An overview of different methods on the generation
of road course maps from raw data points is presented
in [6]. In [7] a road refinement based on an active shape
model is proposed in order to fit B-splines to road segments.
Walton and Meek [8] discuss a control polygon approach
for guiding a clothoid spline. Many research studies deal
with clothoid approximations in order to get around the
transcendental structure of the clothoid. In [9] a strategy
is pointed out on the approximation of a clothoid and its
offset by Bézier curves and B-splines. By the use of an arc
spline approximation to a clothoid it is shown in [10] that
the approximation error decreases by a quadratic order when
increasing the number of arcs.

C. Outline

Starting with the data acquisition in section II-A, we
discuss different curve type as possible lane representations
in section II-B taking into account a predefined list of
relevant criteria. Next, a new method for the generation
of an arc spline representation is pointed out in part III.
After showing some experimental results in section III-C,
we conclude our work with some future ideas.

II. METHOD DESCRIPTION

A. Data Acquisition

For the generation of a curve representation of the lane,
we assume to have a set of data points to be approximated
according to a chosen model. These data points can arise
from processing raw data of different data sources like



Fig. 1: Illustration of an offset curve

• laser scanner-based data acquisition
• video-based lane detection
• processing of aerial images
• import from other data sources like maps or reference

measurements.

B. Discussion of Lane Representations

1) Evaluation Criteria: In this section we discuss differ-
ent lane representations that are commonly used for digital
maps. Beside their general properties we focus on the fol-
lowing criteria, which are important for the applications:

Precision: In order to evaluate the precision of the chosen
lane representation we must define the ground truth reference
data and the error metric. For that purpose it is reasonable to
refer to an abstract set of point data as ground truth, as it can
be extracted from existing reference maps or other ground
truth sources. Well-established error metrics are based on the
maximum norm or least square error.

Calculation of best approximating points: As mentioned in
the introduction the calculation of best approximating points
on the curve with respect to a given point is a crucial issue.
Therefore, high efficiency is needed in order to enable real-
time algorithms on the applications side. Hence, any non-
linear optimization for that task should be avoided during
the running driver assistance system.

Offset curve: Some elements like road markings or
guardrails are located parallel to the lane in terms of offset
curves (cf. Fig. 1). Hence the calculability of an offset curve
is an important criterion.

Data volume: The data volume for the lane representation
should be as memory efficient as possible to ensure data
handling on the applications side.

2) Curve Model: As mentioned above we assume to have
a set of data points, that should be approximated by the
chosen lane model. In Fig. 2a a simple example is given for
illustration.

a) Polygon: A very simple, but commonly used model
for the lane representation is given by a polygon, approximat-
ing the data points (cf. Fig. 2b). For cartographic purposes
it can be defined manually using an interactive tool for the
map generation or using approximation techniques like the
minimum link path (MLP) (cf. [11]). Polygons do not provide
any curvature information which is indeed important for
many applications. Furthermore, they only satisfy continu-
ity, but no smoothness (C1-continuity) at the breakpoints
which is counterintuitive as roads are actually constructed

(a) Bird’s eye view on data
points for subsequent curve
fitting.

(b) Illustration of a polygon rep-
resentation.

Fig. 2: Example for a simple lane representation.

with smooth course. In section III-C some statements are
given concerning the minimum necessary number of polygon
breakpoints for a road segment and a predefined precision.
This estimation directly defines the minimum data amount
that is necessary to store the polygon representation. The
calculation of point to curve distances is simple for a polygon
and can be expressed in a closed form. The offset curve of
a polygon is an arc spline.

b) Clothoids: A clothoid is a curve given in a paramet-
ric form by the Fresnel integral. For instance, the clothoid at
the origin with starting curvature zero is defined by

K : [0, L]→ R2,K(t) := a

(
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)
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where L is the arc length, R is the curvature radius at the end
point of the clothoid and a is a scaling factor. The curvature
of the clothoid increases linearly in terms of the arc length.
As mentioned above, clothoids are used for certain parts
of road constructions. Therefore, for these parts, a clothoid
would be the best model for our map building task. However,
most of the relevant calculations, like curve approximation,
point to curve distance calculation and even drawing of the
curve are computationally expensive as they imply non-linear
optimizations. In general, the offset curve of a clothoid is not
any more a clothoid. Regarding the data amount, at least the
start point and the starting tangential direction have to be
stored together with two values of either the arc length, the
end curvature or the scaling factor.

c) Polynomial splines: There are several works propos-
ing cubic Hermit splines ([6]), B-Splines ([7]) or NURBS
([9]) as an approximation of clothoids. Most of these ap-
proaches are based on interpolation between breakpoints,
that have to be defined beforehand either manually or by
a strategy using original data points. However, this choice
is subjective but crucial as it is sensitive to outliers. While
some of the polynomial splines guarantee C2-continuity,
the calculation of point to curve distances still remains
a non-linear optimization problem. Furthermore, invariance
criteria with respect to rotation, translation, scaling and offset
building are only hardly satisfied or comparatively expensive



Fig. 3: Curve approximation using an arc spline

to compute. For each curve segment, simply the parameter
of the polynomials have to be stored.

d) Arc splines: An arc spline is a planar curve, whose
trace is a union of circular arcs and line segments, and
which must be capable of being injectively parameterized.
The latter means that the curve has no self-intersections.
Accordingly, smooth arc splines are those ones which show
equality of the tangent unit vectors at the breakpoints given
by every two corresponding segments. Further properties of
arc splines are their curvature being a step function and the
invariance with respect to rotations, translations and scalings.
Beyond that, the offset curve of an arc spline is in fact an arc
spline and can be calculated very easily, and the calculation
of point to curve distances is especially simple as it can
be expressed in a closed form. In contrast to clothoids or
polynomial splines, an arc spline can always be expressed in
a parameter-free form. In addition, they are compatible with
all established geometry and CAD systems. Visualization
of an arc spline is computationally much more efficient in
comparison to other curve types mentioned above. A circular
arc is uniquely defined by three distinct points. Hence
concerning the amount of data for storage, for each segment
at most two points must be stored if the breakpoints are
reused for the next segment and additionally one more point
for the whole arc spline. Section III-C provides information
on the number of segments, that are necessary for the curve
approximation.

Another advantage of using arc splines is that effectively
round structures like roundabouts can be represented espe-
cially well in digital maps. Finally, if an application needs
a more simple representation, a polygon can be extracted
directly by connecting the breakpoints of the arc spline.

Due to their advantageous properties, we propose to take
smooth arc splines as a model for the representation of lanes
and similar structures in digital maps. As the map genera-
tion should preferably run without any user interaction, the
question remains how to calculate the arc splines based on a
set of data points. A simple exemplary situation is illustrated
in Fig. 3, where a smooth arc spline is fitted to the above
example.

Fig. 4: Example of a tolerance channel and a corresponding
SMAP. The small points indicate the breakpoints of the arc
spline. Also, we can see that the pictured SMAP alternately
touches the channel from the left and from the right.

III. GENERATION OF ARC SPLINES

A. Smooth Minimum Arc Path (SMAP)

We are interested in a curve that not only approximates
the extracted points up to unavoidable tolerance errors but
also describes them effectively, i.e. with minimal complexity.
Such a characterization allows coping with tasks and appli-
cations motivated in Section I. In addition to their general
properties, (circular) arc splines satisfy the evaluation criteria
for modeling lanes formulated in Section II-B. Above all,
smoothness at the breakpoints is required in order to enable
a realistic modeling.

A promising solution would be a smooth arc spline ap-
proximating the data points with respect to a given tolerance.
This approach turns the approximation problem outlined
above into a multi-objective optimization: Obviously, the
approximation error diminishes if the number of line and
arc segments increases. The more exactly the points are
approximated the more segments are needed. Hence the
proposed method minimizes the number of segments while
keeping a given tolerance. Additionally, this tolerance can
possibly be adjusted to vary locally if desired.

Our approach controls the approximation error by only
focusing on solutions staying inside a so-called tolerance
channel. Typically, such a channel is given by a simple
polygon or an arc spline (cf. Fig. 4). In addition, a source
and a destination segment are fixed. Any smooth arc spline
staying inside the tolerance channel and connecting the
source and destination segments with a minimum number of
segments solves the problem. Such a spline is called smooth
minimum arc path (SMAP).

In [12] an efficient algorithm based on ‘alternating se-
quences’ and ‘feasible direction sets’ for generating a SMAP
is presented. Alternating sequences are families of points
on the bounding curve of the channel that are alternately
touched from the left and from the right as indicated in Fig. 4.
Though generating a SMAP guarantees a smooth arc spline
with the minimally possible number of segments with respect
to any accuracy, it doesn’t satisfy real time requirements.
However, the worst case complexity is quadratic with respect
to the number of input points N and the SMAP algorithm
even performs in O(Nk) in the most practical applications,
where k is the number of segments. Apart from that, the



computational time doesn’t play an important role since the
lane approximation can be generated off-line.

Note that this algorithm simply needs a set of points and
a desired accuracy as input data. Then, a corresponding
tolerance channel is calculated and a SMAP is generated.
In comparison, the method suggested in [10] would need
the original clothoid, arc and line segments of the lane,
which have to be approximated. However, usually only
point data, not exact reference curves are available for lane
approximation. Finally, the question remains how to generate
a suitable tolerance channel from some data in order to use
the algorithm proposed in [12].

B. Tolerance Channels

After a preprocessing step, where we possibly have re-
moved some outliers, we can suppose a finite family of points
(p1, . . . , pN ) with P := {p1, . . . , pN} s.t. the polygonal
curve ω successively passing through the points pi, starting
at p1 and ending at pN is simple. As already indicated, we
address the approximation of P by a (smooth) arc spline
with a minimal number of segments subject to satisfying the
bounding requirements of an error function. Hence we are
searching for a smooth arc spline γ with a minimum number
of segments subject to Φ(γ, P ) < ε for some ε > 0 and error
function Φ. Dealing with the maximum norm

Φ(γ, P ) = max
i=1,...N

dist(pi, γ),

would be appropriate, where dist denotes the euclidean dis-
tance. Alternatively, the Hausdorff-distance of ω can be taken
into account. For algorithmic causes it is reasonable to design
a suitable tolerance channel and to use the methods proposed
in [12]. This approach has a considerable advantage. We
are able to control the behavior of the approximating curve
between each two points pi and pi+1 by the bounding
channel. This way we also get geometric constraints, which
can be locally varied in quite a simple manner and are easier
to modify than constraints defined by a metric or norm.

When computing an approximation s.t. the determined arc
spline is within a specified tolerance ε > 0 to the pi, the
offset Ωε(ω) =

{
a ∈ R2

∣∣ dist(a, ω) = ε
}

of the polygonal
path ω can be considered. As already mentioned, the offset
curve of a polygonal is an arc spline for sufficiently small
ε. In order to ensure an efficient algorithmic approach we
can again approximate the arcs in the offset by a polygonal
path, and we obtain a polygon channel, where mostly the
semi-circles at p1 and pN are replaced by a start and a
destination line segment. Generally speaking, the ε-offset is
a region formed from strips of width 2ε which are centered
at the polygon edges. Thus, in a neighborhood of sharp
corners this doesn’t guarantee that the curve remains close
to the given points. Therefore, Drysdale et al. suggest a so-
called polygonal tolerance region in [13]. They also want
their approximating curve to have distance at most ε > 0
from ω. Fig. 6 shows an example of a polygonal tolerance
region, which ensures the Hausdorff distance of γ and ω
to be smaller than ε for every curve γ from the starting
to the destination segment staying inside the closure of this

Fig. 5: Polygonal Path connecting points and corresponding
offset curve for some ε > 0; start and destination segments
are line segments passing through the first and last point,
respectively.

Fig. 6: Polygonal tolerance region. The bends at the two
points are shortcut in order to guarantee the approximating
curve having at most distance ε, which is indicated by the
gray circles with radius ε.

region. Although the channel depicted in Fig. 5 might not
exactly guarantee a Hausdorff distance less or equal ε, it is
appropriate if P doesn’t yield sharp corners. Furthermore, it
can be computed straightforwardly and is sufficient for most
applications with real data.

If we have some additional preliminary knowledge of
some parts the approximating curve should consist of, we
can flexibly adapt the tolerance channel passing through this
part. For instance, knowing that in a certain neighborhood
there should be a line but not an arc segment, we can search
for a line connecting corresponding arcs or the other way
around, i.e. we first fit a line through a subset of the given
points and then force the arc spline corresponding to the
remaining points to join the line smoothly. For instance,
the approximation illustrated in Fig. 9 was established this
way. In addition, it is possible to integrate preliminary
knowledge by inserting vertices automatically or manually
without losing the minimal number of segments.

C. Experimental Results

Figures 7 and 8 show examples of the approximation of a
clothoid with maximally admissible tangent deviation given
by an arc length L = r, where r is the curvature radius at
the end point and the starting curvature vanishes.

From the theoretical results of [10] and [12] we can state
the following properties:

• If the clothoid, which has to be approximated, has a
constant arc length then the number of arcs increases
when increasing the tangent deviation angle θ. As θ



Fig. 7: Tolerance channel of a clothoid with L = R = 30
meters and width 2ε, ε = 0.2 meters.

Fig. 8: Tolerance channel of a clothoid with L = R = 1000
meters and width 2ε, ε = 0.1 meters; exemplary arc spline
approximation with 8 segments smoothly joining a given line
and arc segment.

is bounded by a maximally feasible angle due to [1],
we can estimate the maximum number of segments a
SMAP needs at most for an arbitrary tolerance level.

• Narrowing the tolerance channel to a n-th of the pre-
vious width meets in scaling the original clothoid with
factor n while keeping the tolerance error fixed. That
means that the ratio of arc length and maximum error
stays constant.

• Using n-times the number of segments the approxima-
tion error behaves like O(n−2).

• If L is the maximally possible clothoid arc length
such that only one arc is sufficient for approximating
it with tolerance ε, we also need only one arc when
approximating a clothoid with n-fold arc length and
tolerance ε · n.

In our tests we have focused on the following scenario:
We have approximated a clothoid which joins a starting line
segment and an ending arc with radius r in a C2-manner.
Table I shows the maximal arc length such that one arc
suffices for the approximation of a clothoid with L = r
and L = r

9 respectively. As already seen, the case L = r
corresponds to the maximum tangent deviation and L = r

9
to the minimum one. Some examples of estimations of the
number of segments needed regarding a tolerance error of
ε = 0.05, 0.1, 0.2 meters can be found in Tables II to IV.
There we have compared approximations by a smooth arc
spline with corresponding polygonal curves given by a MLP.

Note that the illustrated values are upper bounds of the
real amount of segments a SMAP needs since the method
we used for calculating these values doesn’t guarantee the
minimally possible number of segments. In contrast, the

ε = 0.05m ε = 0.1m ε = 0.2m
Maximum tangent deviation 8.43m 16.86m 33.73m
Minimum tangent deviation 74.77m 149.56m 299.12m

TABLE I: Estimations for maximum arc length such that one
arc is sufficient for approximation.

15 25 50 100 250 500 1000 2500 5000
I 2 2 3 4 6 8 11 18 25
II 3 4 6 8 12 17 24 38 53
III 1 1 1 2 2 3 4 6 9
IV 2 2 2 3 5 6 8 13 18

TABLE II: Estimations for the number of segments w.r.t. to
tolerance ε = 0.05 m and different arc lengths L (meters).
I Arc Spline with L = r, II Polygon with L = r, III Arc
Spline with L = r/9, IV Polygon with L = r/9.

15 25 50 100 250 500 1000 2500 5000
I 1 2 2 3 4 6 8 13 18
II 3 3 4 6 9 12 17 27 38
III 1 1 1 1 2 2 3 5 6
IV 1 1 2 2 3 5 6 9 13

TABLE III: Estimations for the number of segments w.r.t.
to tolerance ε = 0.1 m and different arc lengths L (meters).
I Arc Spline with L = r, II Polygon with L = r, III Arc
Spline with L = r/9, IV Polygon with L = r/9.

15 25 50 100 250 500 1000 2500 5000
I 1 1 2 2 3 4 6 9 13
II 2 2 3 4 6 9 12 19 27
III 1 1 1 1 1 2 2 3 5
IV 1 1 1 2 3 3 5 7 9

TABLE IV: Estimations for the number of segments w.r.t.
to tolerance ε = 0.2 m and different arc lengths L (meters).
I Arc Spline with L = r, II Polygon with L = r, III Arc
Spline with L = r/9, IV Polygon with L = r/9.

number of line segments is a lower bound, as they were
created by calculating a MLP, which ensures the minimality
with respect to a polygonal tolerance channel. We will adapt
and optimize a SMAP-based strategy for map generation
purposes within the project Ko-PER. In any case, we usually
need a fewer number of arc segments since supposing a
maximum tangent deviation is an extremal setting regarding
all feasible clothoids and this doesn’t meet the average case.

Fig. 9 shows an example of a lane approximation based
on raw data. The line segments at the beginning and at the
end have been approximated beforehand and then a SMAP
smoothly joining these line segments has been computed.
Note that the width of the lane varies, i.e. the width at curved
parts is greater than at straight ones. Hence the resulting
arc splines are not parallel curves. Also, for the right curve
we have plotted the corresponding tolerance channel and we
included a magnified detail showing the extracted raw points
the tolerance channel was generated from.



Fig. 9: Approximation of a S shaped lane by smooth arc
splines. The left and the middle splines have eight segments
and the right one consists of seven arcs and line segments.

IV. CONCLUSIONS AND FUTURE WORKS

In this paper we presented an approach for the usage of
arc splines as curve representation in high precise digital
maps. We demonstrated that arc splines show advantageous
properties for computational efficiency which is necessary
in many driver assistance systems that use digital maps.
Furthermore, for cartographic purposes, an efficient method
has been pointed out that allows the generation of arc splines
based on a wide range of data sources taking into account a
freely adjustable approximation accuracy.

Several extensions of our approach will be developed in
future: We will enrich our lane representation with compact
and dynamic information on the lane width and also height
profiles will be addressed. First evaluations give reason to
yielding an efficient and high accurate 3D representation
when fusing the planar curve and the height information.
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