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Kurzfassung:
In den letzten Jahren haben Fahrerassistenzsysteme im Bereich der aktiven Sicherheit entschei-
dend zur Verringerung und zur Schadensbegrenzung von Verkehrsunfällen beigetragen. Draht-
lose Übertragungstechnologien sowie Methoden zur fahrzeugübergreifenden Sensordatenfusion
erlauben neuerdings den Übergang zu kooperativen Assistenzfunktionen. Zur konsistenten Inte-
gration von Umgebungsmodellen und der darauf aufbauenden Interpretation der Verkehrssitua-
tion stellen sich allerdings hohe Anforderungen an die Lokalisierungsgenauigkeit von Fahrzeugen.
Derzeit verfügbare Technologien sind hierfür meist nicht leistungsfähig genug oder zu kostenin-
tensiv für einen Serieneinsatz.
Die Dissertation stellt Methoden und Modelle für einen landmarkenbasierten Ansatz zur Fahr-
zeugeigenlokalisierung vor. Dabei besteht die Grundidee darin, Informationen aus der fahrzeug-
lokalen Umgebungsperzeption mit Daten einer hochgenauen digitalen Karte zu assoziieren, um
schließlich auf die Position des Fahrzeugs zu schließen. Da derzeit keine digitalen Karten mit
der geforderten Präzision und dem notwendigen Detaillierungsgrad im Fahrerassistenzbereich
zur Verfügung stehen, wird ein neues Konzept zur Generierung hochgenauer Karten vorgestellt.
Die darauf aufbauende probabilistische Eigenlokalisierungsstrategie fusioniert Daten einer Video-
kamera, eines Laserscanners, GPS und intrinsische Fahrzeugmesswerte in einem Partikelfilter-
ansatz. Es wird aufgezeigt, dass mit der vorgeschlagenen Methodik globale Lokalisierungsge-
nauigkeiten deutlich unter einem Meter und Orienierungsgenauigkeiten unter einem Grad auch
bei Geschwindigkeiten bis 100 km/h in Echtzeit erreicht werden können, was die von den Assis-
tenzfunktionen gestellten Anforderungen erfüllt.
Die Kartenmodellierung basiert auf glatten Kreisbogensplines, also auf Kurven, die stückweise
aus Kreisbögen und Strecken aufgebaut sind. Für die Kurvenpassung kommt ein Approxima-
tionsverfahren zum Einsatz, das für jede vorgegebene maximale Fehlertoleranz einen Kreisbogen-
spline mit minimaler Segmentzahl liefert. Diese Eigenschaften sind wertvoll für digitale Karten,
denn sie bedeuten die Kontrollierbarkeit der Genauigkeit von Kartenelementen und die Mini-
mierung des zur Speicherung benötigten Datenvolumens. Von diesen Vorteilen profitieren nicht
nur die in dieser Arbeit vorgestellten Beobachtungsmodelle zur Fahrzeugeigenlokalisierung, son-
dern es ergibt sich auch ein Mehrwert für weitere Anwendungen im Automotivebereich.
Im Rahmen einer umfangreichen Auswertung basierend auf simulierten und realen Daten wird
aufgezeigt, dass das vorgestellte Kartenkonzept der weit verbreiteten Modellierung mit Poly-
gonen und anderen Kreisbogensplineapproximationen hinsichtlich der Effizienz von Berechnungen
auf der Karte, dem Datenvolumen und dem Informationsgehalt überlegen ist. Darüber hinaus
demonstriert eine Reihe von Experimenten die Robustheit des Lokalisierungsansatzes hinsichtlich
unterschiedlicher Kartendetaillierung, Sensorkonfigurationen und Umgebungsbedingungen.
Damit stellt die Kartenmodellierung zusammen mit der Eigenlokalisierung ein viel versprechendes
Konzept für zukünftige Systeme der aktiven Sicherheit im Straßenverkehr dar.

Schlagworte: Eigenlokalisierung, hochgenaue digitale Karte, Kreisbogensplines, Landmarken
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Abstract:
In recent years, driver assistance systems have contributed significantly to the reduction of traffic
accidents and the mitigation of crash consequences. Wireless communication technologies as well
as sensor data fusion methods across vehicles enable cooperative assistance functions. However,
the consistent integration of environment models and the subsequent interpretation of traffic
situations impose high requirements on the self-localization accuracy of vehicles. State of the
art technologies are often not effective enough for these purposes or they are too expensive for a
series application.
This thesis presents methods and models for a landmark-based vehicle self-localization approach.
The basic idea is to associate information from the vehicular environment perception with data of
a high-precision digital map in order to deduce the vehicle’s position. Since no digital map with
the required precision and level of detail is available at present, a new concept for the generation
of high-precision maps is proposed. The probabilistic self-localization strategy, which fuses data
from a video camera, laser scanner, GPS and intrinsic vehicular measurements in a particle filter
framework, satisfies the accuracy requirements defined by the applications. It is shown that a
global localization accuracy significantly below one meter and an orientation accuracy below one
degree can be reached even at a speed up to 100 km/h in real-time using the methods presented.
The map model is based on smooth arc splines, which are curves composed by smoothly joint cir-
cular arcs and line segments. For any given maximal tolerance, the applied curve approximation
method generates a smooth arc spline with a minimum number of segments. These properties
are most valuable for digital maps since they imply the checkability of accuracy of map elements
as well as the minimization of data volume required for storing the map. Also, the advantages
are profitable not only for the self-localization observation models defined in this work, but they
represent an additional value for further automotive applications.
By means of an extensive evaluation of the map concepts using both simulated and real data, it
is shown that the approach developed in this thesis outperforms the widely-used map modeling
with polygons or other arc spline approximations when judged by criteria like efficiency of map
calculations, data volume and information content. Moreover, a series of experiments demon-
strates the robustness of the approach regarding different levels of details in the map, altering
sensor configurations and environmental conditions.
It will be demonstrated that the mapping approach and the self-localization strategy presented
in this work represent a promising concept for future systems within the field of active traffic
safety.

Keywords: self-localization, high-precision digital map, arc splines, landmarks
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Notations

Notation Description

N Set of natural numbers starting with 0
Z Set of Integers
R Set of real numbers
R+ Set of positive real numbers
Sr(c) Sphere around c ∈ R2 with radius r ∈ R+

[a, b] Closed interval of real numbers
MT , resp. vT Transposition of a matrix M resp. of a vector v
M−1 Inverse of an invertible matrix M
πk(v) Projection on the k-th component of the vector v ∈ Rn, 1 ≤ k ≤ n
SO(n) Special orthogonal group in Rn

∃,∀ Existential quantifier and universal quantifier
Sn Set of smooth arc splines with segment number n ∈ N
Pn Set of polygons with segment number n ∈ N
ḟ Derivative of a univariate function f
Df Total derivative of a function f
Dif Partial derivative of a function f with respect to its i-th variable

Notation Common usage

x, y, z coordinates
λ, φ geographic longitude λ and latitude φ
p, q points
ψ yaw angle
x (state) vector
i, j, k indices
w,ω parametrization w of a curve ω
s, γ segment s of an arc spline γ
t, tk time parameter t and specific point in time tk
Π prototype as compact subset of R2





Chapter 1

Introduction

‘You can’t know where you are going
until you know where you have been.’

(Old saw)

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1 Motivation

In recent years, many research activities in the field of advanced driver assistance technologies
(cf. [Ko-FAS 13, interactIVe 13, HAVEit 11, INTERSAFE-2 11, PReVENT 08]) have brought
active safety approaches from experimental to maturity phase. The accident analyses and statis-
tics (cf. [GIDAS 08, DESTATIS 11]) show that these systems have the potential for significantly
reducing the number of crashes or mitigating the injuries and damages caused by accidents.
While modern driver assistance systems like ACC, ESP and electronic brake assist (EBA) help
to decrease the frequency of accidents occurring in comparatively simple traffic scenarios, ad-
vanced active and preventive safety concepts are required to handle more complex situations. In
the latter case, classical vehicular environment perception systems using onboard sensors to up-
date a local environment model are often not sufficient to capture and interpret the surroundings,
which is indeed substantial for any safety-related driver assistance function. To cope with this
problem, cooperative perception concepts are considered within the joint project Ko-PER, which
is part of the project initiative Ko-FAS [Ko-FAS 13], with the aim to let road users share their
specific perception results using communication technology. In doing so, the integration of per-
ceived objects from different vehicles increases the robustness and completeness of the individual
knowledge on the surroundings. An example is depicted in Figure 1.1.1, where an occlusion is
overcome by communicating and integrating the environment models of different road users.
In order to interpret the communicated data and to integrate different environment models con-
sistently, precise and reliable information on the position and orientation (called pose) including
the time of validity of the involved objects is crucial (cf. [Wertheimer 13]). This, in turn, neces-
sitates that the individual observers are able to identify their own position (self-localization in
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Figure 1.1.1: Cooperative perception: The passenger car on the right is not able to perceive the pas-
senger car on the left using its onboard sensors due to an occlusion caused by the bus.
However, this problem can be solved by sharing the environment models between the
right car and the bus, which is actually able to observe the left vehicle.

terms of position, orientation and time). Within this context, a longitudinal and lateral position
accuracy below 1 m and an orientation accuracy in the magnitude of 1◦ are required to distin-
guish between two adjacent vehicles and to associate road users and individual lanes. Hence, the
vehicle self-localization represents an essential and challenging component for any cooperative
system in the field of active safety.
Since standard Global Navigation Satellite Systems (GNSS) often cannot provide positioning
results with the required accuracy and reliability defined above due to multi-path scattering,
shading effects caused by the environment and atmospheric disturbances (cf. [GPS 08]), alter-
native and complementary global localization techniques must be considered.
In this thesis, a map-based vehicle self-localization approach is presented. The basic idea is to
associate distinctive static objects, like road markings or traffic signs, which are detectable using
onboard sensors, with corresponding objects in a high-precision digital map in order to deduce
the vehicle’s position and orientation. For that purpose, different components are essential:
Suitable environment perception methods need to be developed in order to identify the relevant
objects based on the vehicular sensor setup. Furthermore, a digital map holding the reference
objects with a high global accuracy is required, where the specific requirements are met by the
standard digital maps available in today’s driver assistance systems. Finally, in order to cope
with uncertainties regarding the sensor accuracy, the data processing and the map association,
probabilistic methods and models are essential for the self-localization approach. Figure 1.1.2
gives a rough overview of the localization strategy presented in this work.



1.2. Contribution 5

GPS	  Laser	  
scanner	   Camera	   Digital	  

map	  

Sensors	  

Extrac6on	  of	  
landmarks	  

Laser	  scanner	  
processing	  

Lane	  
recogni6on	  

Filtering	  

Et
he

rn
et
	  

Associa6on	   Par6cle	  filter	  

Self-‐Localiza2on	  using	  	  
map	  associa2on	   Vehicle	  

pose	  

Applica6ons	  /	  Framework	  

Vehicle	  
dynamics	  

Figure 1.1.2: Overview of the self-localization approach: Environment perception methods based on a
monocular gray value camera and a laser scanner are used to identify distinctive objects
in the vehicle’s surroundings. The sensor data processing allows detecting road markings
using a video-based lane recognition system and extracting landmarks, like traffic signs,
trees or reflection posts, realized in a specific laser scanner processing unit. These objects
are associated with elements in the digital map in order to correct the position estimation.
Intrinsic measurements of the vehicle dynamics, like the velocity and the turn rate, deter-
mine the motion model of the vehicle. Known in the field of stochastic state estimation,
a particle filter is used to realize a probabilistic approach of the pose estimation, which
is roughly initialized with GPS.

1.2 Contribution

The main contributions of this thesis can be summarized as follows:

• A model for highly accurate digital maps is presented which makes intensive use of smooth
circular arc splines as a curve model for continuous structures like individual lanes and
road markings. Compared to the widely-used polygon map model, the proposed model
shows many advantageous properties regarding numerical computations, data volume for
storage and the information content. The usage of the map model is not restricted to the
vehicle self-localization approach in this thesis but it represents an additional benefit for
many map-based driver assistance systems.

• In order to create a data basis for the generation of digital map elements, a strategy for
the reconstruction of raw measurement points based on a vehicular data acquisition is
proposed. The measurement points, extracted by environment perception methods, are
reconstructed in a global coordinate system using a high-precision reference positioning
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system, time stamps for sensor data and different filtering and postprocessing techniques.

• For the generation of curved map elements based on reconstructed measurement points, a
new method originated in the field of reverse engineering has been adapted and extended
for the present mapping purposes. For any given tolerance, modeling the maximal deviation
between the resulting curve and the input point sequence, the algorithm generates a smooth
arc spline with the minimal possible number of curve segments. These properties are
valuable for digital maps since they allow controlling the accuracy of the map elements and
minimize the data volume for their storage regarding the chosen map model.

• A self-localization method is proposed which allows estimating the vehicle’s pose based on
the association of vehicular-perceived objects with elements in the digital map. Within
this context, a sensor data fusion concept for a video camera, a laser scanner, GPS and
inertial measurements of the vehicle is realized in a probabilistic particle filter approach.
The involved observation models and resampling strategies extensively benefit from the
particular properties of the digital map model.

• By means of an extensive evaluation of the presented map concepts using both synthetic
and real data, it is shown that the mapping approach developed in this thesis generally out-
performs comparable methods with polygons or other arc spline approximations regarding
criteria like efficiency of map calculations, data volume and information content. Further-
more, a series of experiments shows that global localization errors significantly below 1 m

and orientation errors below 1◦ can be achieved by using the presented self-localization
methods on rural roads even at a speed of 100 km/h.

1.3 Outline

Chapter 2 introduces some fundamental models and methods required for the mapping and
localization approach. Regarding the map modeling, arc splines as a special curve type play a
leading role as geometric representation for map elements. Furthermore, stochastic models and
methods for state estimation purposes are presented within this section.
In Chapter 3 the basic environment models are declared, including all relevant coordinate systems
as well as the geometric and dynamic vehicle model. Then, all required environment perception
methods for the vehicular data acquisition are explained in Chapter 4. In particular, the video-
based lane recognition is detailed since it is required within the mapping and localization process.
After a requirements analysis and the discussion of common curve representations, the model of
the digital map is presented in Chapter 5. This includes the definitions of individual lanes, road
markings and landmarks that are necessary for the localization. It is shown how the modeled
map elements can be generated by processing sensor data based on a vehicular acquisition.
The map-based vehicle self-localization approach is presented in Chapter 6 by defining observa-
tion models and strategies for the association of perceived objects with map elements.
In order to evaluate the performance of the presented mapping and localization techniques, a
series of experiments and results is summarized in Chapter 7 with an outlook to possible future
work.



Chapter 2

Fundamentals

‘Most of the fundamental ideas of science are
essentially simple, and may, as a rule, be expressed

in a language comprehensible to everyone.’
(Albert Einstein)
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In this chapter some fundamental definitions and methods are declared which are used in later
sections of this work.

2.1 Arc splines

This section defines some relevant terms and notations concerning arc splines. The definitions
mainly refer to [Maier 10], where the proofs of the stated properties can be found as well. Pro-
found treatments of geometry are available in standard references (cf. [Cao 03, Hartshorne 00,
Carmo 92, Dieudonné 60]).

2.1.1 Definitions

In the following, all of the terms related to orientation or relative position of structures refer to
a Cartesian system with right-handed orientation in R2.

Definition 2.1.1.1 (Curve)
A continuous and piecewise continuously differentiable mapping w : [a, b]→ R2 is called parame-
trization (of a curve). In addition, the function Φ : [a, b] → [c, d] expresses an order-preserving
change of parameters if Φ is piecewise continuously differentiable and surjective and if Φ̇(s) > 0

holds except a finite number of points.
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Any two parametrizations w1 : [a, b] → R2 and w2 : [c, d] → R2 are called equivalent if there
exists a change of parameters Φ : [a, b]→ [c, d] with w1 = w2 ◦Φ. The corresponding equivalence
classes are called curves, denoted by ω.
A curve is called regular if there exists a parametrization w : [a, b]→ R2 whose derivative ẇ does
not vanish at any point.
For any parametrization w of ω, the trace of ω is given by tr(ω) := w([a, b]). In this context,
S(ω) := w(a) is the starting point and E(ω) := w(b) is the endpoint of the curve. If there exists
an injective parametrization of ω, the curve is said to be simple. A curve ω is said to be closed if
S(ω) = E(ω). A closed curve ω is a Jordan curve if there exists a parametrization w : [a, b]→ R2

whose restriction w|[a,b[ is injective.
In the following, we only focus on

• simple or Jordan curves

• which are regular.

The term τω(x) := ẇ(t)
‖ẇ(t)‖ defines the tangent unit vector of ω at x = w(t). The corresponding

orthogonal normal unit vector is denoted by nω(x) :=
(

0 −1
1 0

)
· τω(x).

A parametrization of ω is called arc length parametrization if ‖ẇ(t)‖ = 1 holds for all t ∈ [a, b].
If ω is simple, then each injective parametrization w induces a unique order:

x1 � x2 ⇔ t1 ≤ t2 (2.1.1)

whenever x1 = w(t1) and x2 = w(t2).
It is obvious that any two injective parametrizations of ω induce the same order.
The length of a curve is given by

len(ω) :=

∫ b

a
‖ẇ(t)‖ dt. (2.1.2)

The Euclidean distance of a point x ∈ R2 to a curve ω is determined by

d(x, ω) := dist (x, tr(ω)) with dist (x,M) := min
x′∈M

∥∥x− x′∥∥
2

(2.1.3)

for a non-empty, compact set M ⊂ R2 and Euclidean norm ‖·‖2.

Definition 2.1.1.2 (Best approximating point)
For x ∈ R2, a point x0 ∈ tr(ω) is called best approximating point of x with respect to ω if
‖x− x0‖2 = d(x, ω) holds.

Definition 2.1.1.3 ((Oriented) Arc / Segment)
Any connected and compact set A ⊆ R2 with card(A) > 1 is called arc if it is a subset of a circle.
A curve is called (oriented) segment if its trace is an arc or a line segment. The term “oriented”
indicates that a curve is meant instead of its trace. This adjective will be omitted if the context
is clear.
If the trace of a segment s is an arc, then C(s) represents the center and r(s) refers to the radius
of the corresponding circle1.

1This circle is unique, as the arc A ⊆ R2 contains an infinite number of points and a circle is already uniquely
determined by three different non-collinear points.
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r(s)

C(s)

s

α(s)

S(s)

E(s)

chord(s)

C(s)

s

S(s)

E(s)

x0

x

τs(x0)

Figure 2.1.1: Left: An arc segment s with starting point S(s), endpoint S(s), center C(s), radius r(s),
chord chord(s) and opening angle α(s). The orientation of the segment is counterclock-
wise. Right: Projection of the point x onto s and corresponding best approximating point
x0 with tangent unit vector τs(x0).

The opening angle of s is described by

α(s) := ^((S(s)− C(s)), (E(s)− C(s))). (2.1.4)

The line segment

chord(s) := {λ · S(s) + (1− λ) · E(s) | λ ∈ [0, 1]} ⊆ R2 (2.1.5)

is called chord of s. If the trace of s is a line segment, then chord(s) = tr(s) holds.
For S(s) 6= E(s), d(s) := E(s)− S(s) and n(s) := 1

‖d(s)‖ ·
(

0 −1
1 0

)
· d(s), the orientation o(s) can

be identified as

o(s) :=

{
−1 if 〈n(s)|τs(S(s))〉 ≥ 0 (“clockwise”)
1 else (“counterclockwise”)

(2.1.6)

Regardless of the chosen parametrization, the curvature κ(s) of an arc segment is constant:
κ(s) = o(s)

r(s) .
In accordance with the previous definitions in Section 2.1.1.1, the length of an oriented line
segment s can be expressed by ‖d(s)‖ = ‖E(s)− S(s)‖.
In contrast, the length of an oriented arc segment is given by α(s) · r(s).
For any arc segment s, the parametrization

w : [0, len(s)]→ R2, t 7→ C(s) + r(s) ·

(
cos( t

r(s) + t0)

sin( t
r(s) + t0)

)
(2.1.7)

constitutes an arc length parametrization where t0 ∈ R, w(0) = S(s) and w(len(s)) = E(s).
Obviously, it is true that

‖ẇ(t)‖ =

∥∥∥∥∥r(s) ·
(
− sin( t

r(s) + t0) · 1
r(s)

cos( t
r(s) + t0) · 1

r(s)

)∥∥∥∥∥
=

√(
− sin

(
t

r(s)
+ t0

))2

+

(
cos

(
t

r(s)
+ t0

))2

= 1.

(2.1.8)
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Likewise, an arc length parametrization of a line segment s is given by

w : [0, len(s)]→ R2, t 7→ S(s) + t · d(s)

‖d(s)‖
. (2.1.9)

Having introduced some basic segments, their composition can now be considered in order to
provide a more flexible way of modeling. Originally, the term spline is used for curves composed
of polynomials. Analogously, an arc spline is a curve that is piecewise defined by segments from
2.1.1.3.

S(γ)

a1 a2

a3

E(γ)

τs1(a1) = τs2(a1)

s1

s2

s3

s4
|γ| = 4

Figure 2.1.2: Smooth arc spline γ with segment number |γ| = 4 and breakpoints a1, . . . , a3.

Definition 2.1.1.4 (Arc spline)
Any simple curve or Jordan curve γ is called arc spline if there exists a finite family (Ai)1≤i≤n

of circular arcs or line segments such that the following holds:

tr(γ) =

n⋃
i=1

Ai (2.1.10)

The minimum n for which a defining sequence (Ai)1≤i≤n of γ exists is called segment number of
γ, abbreviated by |γ| := n.
For any defining sequence (Ai)1≤i≤n and i 6= j, it is true that card(Ai ∩ Aj) ≤ 1 due to the
simplicity of the curve. According to [Maier 10], for any arc spline γ with |γ| = n, there exist
a unique defining sequence (Ai)1≤i≤n and a decomposition of segments s1, . . . , sn of γ such that
tr(si) = Ai. Therefore, we use the abbreviation γ = s1 . . . sn.
The breakpoints a1, . . . , an−1 ∈ R2 of an arc spline γ = s1 . . . sn are given by the non-empty
intersections between Ai and Ai+1 for 1 ≤ i ≤ n− 1.
With li := len(si), the length of an arc spline γ results in

len(γ) =
n∑
i=1

li. (2.1.11)

With the aid of the arc length parametrization wi of the individual segments and the accumulated
segment lengths Lj :=

∑j
i=0 li for j ∈ {1, . . . n}, an arc length parametrization w : [0, L] → R2

of γ can be expressed in the following way:

w(t) =
n∑
i=0

χ
[Li−1,Li]

(t) · wi( χ
[0,li]

(t− Li−1) · (t− Li−1)), L0 := 0, (2.1.12)
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where χ denotes the indicator function. This arc length parametrization of γ results from con-
catenating the arc length parametrizations of the individual segments.

Definition 2.1.1.5 (Smooth arc spline)
An arc spline γ = s1 . . . sn with breakpoints a1 ≺ · · · ≺ an−1 is said to be smooth if

∀
1≤i≤n−1

τsi(ai) = τsi+1(ai). (2.1.13)

The set of all smooth arc splines with segment number n ∈ N is denoted by Sn. Furthermore,
let S = S1 and S∞ =

⋃
n∈NSn.

Definition 2.1.1.6 (Polygon)
An arc spline whose defining sequence consists exclusively of line segments is called polygon. A
polygon can also be seen as a linear polynomial spline.
The set of all polygons with segment number n ∈ N is abbreviated by Pn. Analogous to the
previous definition, let P = P1 and P∞ =

⋃
n∈NPn.

2.1.2 Properties of arc splines

In the following, some of the fundamental properties of arc splines are shown.

2.1.2.1 Invariance

Arc splines are invariant with respect to rotation, isotropic scaling and translation R2. That
means for any arc spline γ ∈ S∞, λ ∈ R, t ∈ R2 and rotation matrix R ∈ R2×2, there exists an
arc spline γ′ ∈ S∞ such that the following holds:

λ ·R · tr(γ) + t = tr(γ′). (2.1.14)

For any set M ⊂ R2, the ε-offset is given by

Mε :=
{
x ∈ R2

∣∣ dist (x,M) = ε
}
. (2.1.15)

Using the normal unit vector nω(x) (cf. 2.1.1.1) and some parametrization w : [a, b] → R2 of a
curve ω, the left ε-offset curve ωε,l and the right ε-offset curve ωε,r can be expressed:

wε,l(t) := w(t) + ε · nω(w(t)), (2.1.16)

wε,r(t) := w(t)− ε · nω(w(t)) (2.1.17)

For a sufficiently2 small ε, the ε-parallel curve of any (smooth) arc spline γ = s1 . . . sn is again
a (smooth) arc spline and the following holds for the resulting left and right offset arc spline
γl = sl,1 . . . sl,n and γr = sr,1 . . . sr,n, respectively:

C(sl,i) = C(sr,i) = C(si)

r(sl,i) = r(si)− o(si) · ε (2.1.18)

r(sr,i) = r(si) + o(si) · ε
2In this case, an upper bound for the offset ε is given by inf

x∈tr(γ)
{ε′ > 0 | B2ε′(x) ∩ tr(γ) connected}, where

Br(x) :=
{
a ∈ R2

∣∣ ‖a− x‖ ≤ r}.
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The calculation of offset curves plays a role in the generation of digital maps as it allows deter-
mining parallel structures like lanes or lane markings in a simple way.

2.1.3 Distance calculation to arc splines

This section explains appropriate methods for the calculation of the distance between any point
x ∈ R2 and an arc spline γ = s1 . . . sn. That task is related to the computation of the corre-
sponding best approximating point x0 ∈ tr(γ) or with the calculation of the arc length parameter
t0 ∈ [0, len(γ)], respectively, for which w(t0) = x0 holds regarding an arc length parametrization
w of γ.
As the distance between x and γ as well as the arc length parameter t0 are directly resulting from
the best approximating point x0, the computation of x0 is treated first. This can be separated
into two parts:

1. The calculation of the best approximating point x0 of x with respect to a segment s

2. The calculation of a segment s? having the shortest distance to x regarding (2.1.3) or, in
other words, d(x, s?) = min

i
d(x, si)

Calculation of the best approximating point of x with respect to a segment

Line segment: For any line segment s, let l := ‖E(s)− S(s)‖ be the length of s and let
d(s) := E(s)−S(s)

l denote the normalized direction of the chord of s. Using λ := 〈d(s)|x− S(s)〉,
the required best approximating point is given by

x0 =


S(s) λ ≤ 0 (x0 is the starting point of s)

S(s) + λ · d(s) 0 < λ < l

E(s) l ≤ λ (x0 is the endpoint of s)
(2.1.19)

The arc length parameter t0 can be expressed directly in terms of λ: t0 = max{0,min{λ, l}}.

Arc segment: If s is an arc segment, the best approximating point x0 corresponding to x can
be determined in the following way:
First the projection x′0 of x onto the corresponding circle of s with radius r(s) and center C(s)

is considered3: x′0 := C(s) + r(s) · x−C(s)
‖x−C(s)‖ . If x′0 is in tr(s), it is obviously true that x0 = x′0,

otherwise x0 is the starting point or the endpoint of s. The latter case can be treated by
investigating the relative position of x′0 with respect to the chord of s:
Let d(s) := E(s)− S(s) and n ∈ R2 with n := o(s) ·

(
0 1
−1 0

)
· d(s) being the normal vector of the

chord pointing in the direction of the arc. Then the best approximating point x0 is determined
in the following way:

x0 =


x′0 〈n|x′0 − S(s)〉 ≥ 0 (x′0 is in tr(s))

S(s) 〈n|x′0 − S(s)〉 < 0 ∧ ‖S(s)− x′0‖ ≤ ‖E(s)− x′0‖ (x0 is the starting point of s)
E(s) 〈n|x′0 − S(s)〉 < 0 ∧ ‖S(s)− x′0‖ > ‖E(s)− x′0‖ (x0 is the endpoint of s)

(2.1.20)
3Within this context the special case of x = C(s) can be treated in practical applications. In this situation an

arbitrary point in tr(s) is chosen as best approximating point and d(x, s) = r(s) holds.
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By means of the angle β := ^((S(s)−C(s)), (x0−C(s))) the arc length parameter corresponding
to x0 can be expressed by t0 = β · r(s).
In [Irle 09], a formulation for the computation of best approximating points is proposed which
avoids the use of the segment radius by some geometrical reasoning. Within this approach, the
slightly more complex calculations can improve the numerical stability when dealing with large
segment radii.

Calculation of s?: The simplest way of calculating s? is achieved by computing the distance
between x and si for all i ∈ {1, . . . , n}. Finally, the segment of least distance is chosen. This
naive approach might be sufficient for small n depending on the application. However, it requires
O(n) calculations of distances as each segment is taken into account.
For arc splines of higher segment number, the above-mentioned approach might be computa-
tionally too expensive. In this case, some appropriate index structures for arc splines can be
considered. Within this context, Quadtrees ([Samet 90]) or Voronoi diagrams ([De Berg 08,
Aurenhammer 91]) represent advantageous data structures, since an appropriate decomposition
of γ enables the calculation of s? in O(log n) complexity.

Distance and arc length regarding γ: Using these calculations, the distance of x to an arc
spline γ is finally given by the distance to the computed best approximating point x0.
The arc length parameter of x0 with respect to γ results in the sum of the lengths of all predecessor
segments of s? and the arc length parameter of x0 with respect to s?.
To summarize, one can state that distances, best approximating points and corresponding arc
length parameters can be calculated exactly and in a closed form for each segment. By means of
appropriate data structures, these calculations can be realized in an efficient way for complete
arc splines.
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2.2 State estimation

This section deals with common methods for state estimation in the context of dynamic systems.
Especially the Kalman filter and particle filter are discussed.

2.2.1 Dynamic systems

Some of the central components of this work, like the self-localization and the lane recognition,
are model based systems. This means that there exists a formal description of the components
that represents their relevant properties at a certain time. The set of all parameters used for
this description is called by the state of the system. A dynamic system is characterized by
a temporal variance of the state parameter. Typically, the state parameter at a certain time
can not be determined directly. However, observations and measurements allow deducing the
state of the system. Under realistic conditions, the correctness and completeness of the situation
described by the system model cannot be achieved due to physical noise effects.

Therefore, a whole range of stochastic methods and models, which are suitable for state estima-
tion, have been developed in the last decades. The techniques used within the context of this
thesis are already treated extensively in the literature. That is why a detailed introduction to
this topic is not presented here in favor of referring to appropriate standard works of the technical
literature (cf. [Jazwinski 70, Meintrup 05]). In the following, the terms and concepts are mainly
oriented on the treatment in [Tatschke 11].

In the framework of the Bayesian estimation theory, the situation at hand can be formulated
such that the system state corresponds to a Markov process whose respective probability density
function is estimated recursively over time. Within this context, dynamic models describe the
temporal variation of the state whereas observation models allow integrating measurements for
the correction of the state. The measurements can be interpreted as the visible variables of a
Hidden Markov model.

In the following, a dynamic, time-discrete system is considered whose internal state is modeled
by a Rn-valued, stochastic process (Xk)k∈N. The index of the state refers to a strictly isotone
sequence of points in time tk ∈ R, k ∈ N. Likewise, the Rm-valued, stochastic process (Yk)k∈N

models the observations and the measurements of the system, respectively.

The state is supposed to have the Markov property, which means that the corresponding condi-
tional density function and any realizations x, x0, . . . , xn ∈ Rn satisfy

p(Xk+1 = x|X0 = x0, . . . , Xk = xk) = p(Xk+1 = x|Xk = xk). (2.2.21)

for any k ∈ N. Concerning the observation process, the conditional independence of the internal
state is assumed, which means that for any y ∈ Rm

p(Yk = y|X0 = x0, . . . , Xk = xk) = p(Yk = y|Xk = xk) (2.2.22)
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holds as well as the pairwise independence over time for any n ∈ N and k ∈ {0, . . . , n}

p(Yk = yk, . . . , Yn = yn|Xk = xk, . . . , Xn = xn)

=
n∏
i=k

p(Yi = yi|Xk = xk, . . . , Xn = xn)

=
n∏
i=k

p(Yi = yi|Xi = xi)

for realizations yk, . . . , yn ∈ Rm.
In the following, the abbreviation Yk := {Yi = yi | i ∈ {0, . . . , k}} denotes a sequence of mea-
surements for any k ∈ N and corresponding realizations yi ∈ Rm.
Using the state transition probability density p(Xk = x|Xk−1 = xk−1) from time tk−1 to tk and
the state probability p(Xk−1 = xk−1|Yk−1) for any realization xk−1 ∈ Rn by accounting for all
previous observations, the conditional prediction density can be expressed using the Chapman-
Kolmogorov equation:

p(Xk = x|Yk−1) =

∫
Rn
p(Xk = x|Xk−1 = xk−1)p(Xk−1 = xk−1|Yk−1)dxk−1. (2.2.23)

Furthermore, the conditional state density taking into account the observation at time tk can be
expressed using Bayes’ theorem

p(Xk = x|Yk) =
p(Yk = yk|Xk = x)p(Xk = x|Yk−1)∫

Rn p(Yk = yk|Xk = xk)p(Xk = xk|Yk−1)dxk
. (2.2.24)

The equations (2.2.23) and (2.2.24) already indicate a recursive scheme, which is decisive for
further specializations and algorithmic approaches for state estimation purposes. More details
on this topic are to be found in [Bergman 99, Schön 06].
With regard to applications, an important special case of the above-mentioned equations arises
if the dynamic model and the observation model are representable explicitly by functions and
by assuming additive noise. In that case, the dynamic model can be expressed as a function
f : Rn × R2 → Rn. Likewise, the observation model corresponds to a function h : Rn × R→ Rm.
Using the notation

fk : Rn → Rn, x 7→ f(x, tk,∆tk) (2.2.25)

hk : Rn → Rm, x 7→ h(x, tk) (2.2.26)

for k ∈ N the equations

Xk+1 = fk(Xk) +Wk, (2.2.27)

Yk = hk(Xk) + Ek (2.2.28)

hold where the independent Rn- and Rm-valued random processes (Wk)k∈N and (Ek)k∈N are
called process noise and measurement noise, respectively. The notation ∆tk := tk+1−tk describes
the difference between two points in time.
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2.2.2 State estimation algorithms

Based on the terms introduced in Section 2.2.1, some specializations are considered below, which
are relevant for this work. The aim of these methods is to estimate the probability density of
the system process (Xk)k∈N over time and to finally enable a point estimate. The latter implies
calculating a vector x̂l|k ∈ Rn, l ≥ k together with a quality criterion that represents the best
estimation at time tl, taking into account all measurements up to time tk. The information
extracted in that way is then provided to the contextual applications.

2.2.2.1 (Extended) Kalman filter

An important special case of the context discussed above is given by the assumption that both
the dynamic model f and the observation model h are linear and that all involved noise processes
are normally distributed. Under these assumptions, the so-called Kalman filter (cf. [Kalman 60,
Kailath 00]) can be formulated as a recursive estimation algorithm, which has found application
in numerous technological fields. One can show that, in this case, all related density functions
from (2.2.23) and (2.2.24) are Gaussian. Hence, the best point estimation arises from the first
two moments of the distribution, also referred to as mean and covariance matrix. This estimation
is optimal among all point estimations.
The formulation of the filter equations of the Kalman filter is omitted at that point as it is
a special case of the Extended Kalman filter, which is introduced in detail in [Schmidt 66] or
[Schön 06]. In that case, f and h are generally nonlinear functions. Using the Taylor approxi-
mation up to degree one at the estimation x̂k|k and x̂k|k−1, respectively, they can be used in a
linearized way for any x ∈ Rn:

f(x, tk,∆kt) ≈ T
(1)
fk,x̂k|k

(x) = fk(x̂k|k) +Dfk(x̂k|k)(x− x̂k|k), (2.2.29)

h(x, tk) ≈ T
(1)
hk,x̂k|k−1

(x) = hk(x̂k|k−1) +Dhk(x̂k|k−1)(x− x̂k|k−1). (2.2.30)

Concerning the process equation (2.2.27) and (2.2.28) the linearization results in

Xk+1 = T
(1)
fk,x̂k|k

(Xk) +Wk and (2.2.31)

Yk = T
(1)
hk,x̂k|k−1

(Xk) + Ek. (2.2.32)

Finally, the equations of the Extended Kalman filter are given as follows:

x̂k|k = x̂k|k−1 +Kk(yk − h(x̂k|k−1, tk)), (2.2.33)

Pk|k = Pk|k−1 −KkHkPk|k−1, (2.2.34)

x̂k+1|k = f(x̂k|k, tk, tk+1 − tk), (2.2.35)

Pk+1|k = Fk(tk+1 − tk)Pk|kFk(tk+1 − tk)> +Qk(tk+1 − tk), (2.2.36)

Kk = Pk|k−1H
>
k (HkPk|k−1H

>
k +Rk)

−1 (2.2.37)

Here, Fk(∆kt) and Hk are the Jacobi matrices of the corresponding models fk and hk,

Fk(∆kt) := Dfk(x̂k|k) ∈ Rn×n, Hk := Dhk(x̂k|k−1) ∈ Rn×m. (2.2.38)
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Furthermore, x̂1|0 ∈ Rn is the starting value and P1|0 ∈ Rn×n is a symmetric, positive-definite
matrix. The symmetric, positive-definite matrices Qk ∈ Rn×n and Rk ∈ Rm×m are called process
noise covariance and measurement noise covariance.

Within the Kalman Filter equations, the estimated conditional density p̂(Xk = x|Yk) is Gaussian
with mean x̂k|k and covariance matrix Pk|k, called estimate covariance matrix. Likewise, the
estimated conditional density p̂(Xk+1 = x|Yk) is Gaussian with mean x̂k+1|k and covariance
matrix Pk+1|k.

The quantity x̂k+1|k is named predicted state while h(x̂k|k−1, tk) represents the predicted measure-
ment in contrast to the real measurement yk. The expression yk−h(x̂k|k−1, tk) is called residual,
which is required for the measurement update, also called the filtering step (2.2.33), weighted by
the Kalman gain matrix matrix Kk.

One can see that the point estimates for the states x̂k|k and x̂k+1|k as well as the correspond-
ing estimate covariance matrices Pk|k and Pk+1|k are updated recursively within the equations
(2.2.33) to (2.2.37).

As the Taylor approximation is considered only up to the polynomial degree one, the linearization
may be error-prone concerning the point estimation of x̂k|k and Pk|k. If the remainder term
of the Taylor approximation of the chosen dynamic or observation model is significant, more
sophisticated filtering techniques may be more appropriate.

The association of real and predicted measurements represents a decisive step within the filtering
process, particularly in the presence of noise within the measurements. Wrong associations lead
to incorrect measurement updates, which in turn may result in divergence of the estimation error.
Therefore, several extensions of the Kalman filter have been presented in the literature dealing
with uncertainties concerning the association of measurements [Bar-Shalom 95, Bar-Shalom 88].

The Probabilistic Data Association (PDA) filter [Bar-Shalom 09] allows the modeling of concur-
rent association constellations between cluttered measurements and a considered dynamic system
in a statistical sense. This is realized by extending the conditional density function in (2.2.24)
in order to model the probability of the different measurement associations, including the case
when any measurement effectively corresponding to the considered dynamic system is missing
and only noise is available within the measurements. A further extension is realized within the
Joint Probabilistic Data Association (PDA) filter [Bar-Shalom 09, Chang 83], which allows mod-
eling several dynamic systems at a time sharing their measurement spaces. In that case, the
association of interfering measurements is even more challenging and necessitates modeling the
probabilities for more combinatorial constellations. Further examples for filter extensions are
the Integrated Probabilistic Data Association (IPDA) filter [Musicki 94] and the Joint Integrated
Probabilistic Data Association (JIPDA) filter [Musicki 02], which introduce a target existence
propagation model, the Unscented Kalman filter (cf. [Julier 95, Julier 97]) or the particle fil-
ter. Compared to the standard Kalman filter, these algorithms generally improve the filtering
performance, whereas the computational efforts are increased.

The particle filter is described in the next section, since it is used for the proposed self-localization
approach.
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2.2.2.2 Particle filter

The fundamental advantage of a particle filter compared to a Kalman filter consists in making no
assumptions on the probability distributions of the considered state. Furthermore, the dynamic
model and the observation model can be nonlinear. This generalization allows the application of
this estimation technique in much wider contexts. However, in general, these capabilities cause
higher computational costs.
Basically, the terminology from [Tatschke 11] is used, where the corresponding introductions are
worked out in detail. Some more in-depth treatment and extensions of the context summarized
here can, for example, be found in [Doucet 98, Liu 98, Arulampalam 02] or [Schön 06].
The particle filter is based on a sequential Monte Carlo method to recursively estimate the
probability densities in (2.2.23) and (2.2.24). Instead of solving the involved integrals numerically,
the probability density function p(x|Y) is approximated by a finite set of samples, also called
particles,

p(Xk = x|Ys) ≈
M∑
i=1

w
(i)
k δ(x− x

(i)
k|s) (2.2.39)

for any k, s ∈ N and x ∈ Rn together with corresponding weights

M∑
i=1

w
(i)
k = 1, ∀

i∈{1,...,M}
w

(i)
k ≥ 0 (2.2.40)

Here, δ denotes the Dirac delta function, M ∈ N+ is the number of samples x(i)
k|s ∈ Rn of the

Rn-valued random variable X(i)
k|s, and w

(i)
k ∈ R+

0 are the weights of the samples for 1 ≤ i ≤M .

Regarding the approximation (2.2.39), the samples x(i)
k|s must be determined as well as their

corresponding weights w(i)
k . The relation between this approach and the filter equation (2.2.24)

p(Xk = x |Yk) = p(Xk = x |Yk = yk,Yk−1) (2.2.41)

=
p(Yk = yk |Xk = x,Yk−1) p(Xk = x |Yk−1)∫

Rn p(Yk = yk |Xk = x,Yk−1) p(Xk = x |Yk−1)dxk
(2.2.42)

=
p(Yk = yk |Xk = x) p(Xk = x |Yk−1)∫

Rn p(Yk = yk |Xk = x,Yk−1) p(Xk = x |Yk−1)dxk
(2.2.43)

for any k ∈ N and x ∈ Rn can be expressed as follows:
The predicted conditional density p(Xk = x |Yk−1) corresponds to applying the dynamic model
fk to each particle, that is x(i)

k+1|k = fk(x
(i)
k|k) for all i ∈ {1, . . . ,M}.

In addition, the probability density p(Yk = yk |Xk = x) can be formulated using the observation
model with k ∈ N and x ∈ Rn:

p(Yk = yk|Xk = x) = p(Ek = (yk − h(x, tk))) (2.2.44)

where Ek, by analogy with (2.2.28), models a measurement noise process which is commonly
assumed to be normally distributed. By means of approximating with a finite set of particles,
the weights are given as
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w
(i)
k =

p(Yk = yk |X
(i)
k = x

(i)
k|k−1)∑M

j=1 p(Yk = yk |X
(i)
k = x

(j)
k|k−1)

(2.2.45)

for k ∈ N and i ∈ {1, . . . ,M}.
The particle filter recursively applies a prediction step to the set of particles at each point in
time, followed by the determination of the particle weights using (2.2.45). Then the particles
are redistributed according to an appropriate resampling strategy. More details on resampling
strategies and some extensions of the particle filter are described in [Tatschke 11].

The scheme in Algorithm 1 summarizes the individual steps of the Sampling Importance Resam-
pling (SIR) particle filter algorithm.

Algorithm 1 SIR Particle filtering scheme

1. Initialization of the particles
(
x
(i)
1|0

)
1≤i≤M

of the Rn-valued random variable X(i)
0 for 1 ≤ i ≤ M

at time t0.
2. Filtering step: Calculation of the weights

(
w

(i)
k

)
1≤i≤M

of the predicted particles x(i)k|k−1 according

to the density p(Yk = yk|X(i)
k = x

(i)
k|k−1) using the measurements yk ∈ Rm.

3. Resampling: Generation of new samples
(
x
(i)
k|k

)
1≤i≤M

by means of sampling according to the

weights w(i)
k based on the previous particles

(
x
(i)
k|k−1

)
1≤i≤M

such that the probability of choosing the

sample x(i)k|k−1 corresponds to the weight w(i)
k for all 1 ≤ i ≤M .

4. Prediction step: Application of the dynamic model to all particles
(
x
(i)
k|k

)
1≤i≤M

in order to

predict a new set of samples
(
x
(i)
k+1|k

)
1≤i≤M

.

5. Set tk ← tk+1 and iterate from step 2.

Different approaches exist in order to enable a point estimation based on the resulting probability
densities of the particle filter. For example, the empiric expectation

x̂k|s =
M∑
i=1

w
(i)
k x

(i)
k|s (2.2.46)

and the covariance matrix

P̂k|s =

M∑
i=1

w
(i)
k

(
x

(i)
k|s − x̂k|s

)(
x

(i)
k|s − x̂k|s

)>
(2.2.47)

can be extracted from the particle set. However, in general, this approach is only suitable if Xk

is approximately normally distributed. If this is not the case, for example due to multi-modality,
more sophisticated point estimations should be applied. Within this context, the wide field of
pattern recognition opens up, since basically it is necessary to identify significant maxima from
the approximated state density. In order to cope with this problem, clustering techniques like
Mean-shift, Maximum-Likelyhood- or Variational-Inference methods can be applied, which are
capable of dealing with multi-modality.
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2.2.2.3 Application of the state estimation

Having introduced some basic methods of state estimation, the remaining open issues concerning
the application of the estimation methods can be summarized.
For any concrete dynamic system, the state space needs to be specified as well as the dynamic
model and the observation model in order to apply the presented filtering techniques. Further-
more, the involved parameters like the initialization values as well as the process and measure-
ment noise need to be declared.
Regarding the integration of measurements, it should be noted that there might be several
different observation models for one specific dynamic system. This is motivated by multi sensor
systems that provide measurements from different sensors at a certain time in order to estimate
the system state. In this case, the observation models are processed sequentially in the filtering
step, such that it is sufficient to specify individual observation models.
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Environment modeling

‘Complexity is one of the great problems in
environmental design.’
(Christopher Alexander)
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This chapter deals with modeling the vehicular environment. Therefore, the model of the ego-
vehicle is introduced. Besides the description of the vehicle as a dynamic system whose param-
eters are considered over time, an overview of the used sensors is given.
For reasons of simplicity, the individual model components are characterized in their specific
reference frame. This, however, requires the definition of relevant coordinate systems that are
employed for purposes of perception, cartography and localization. In the following, the most
important reference frames are characterized.

3.1 Coordinate systems

Within the context of this work, different coordinate systems are used to describe the individual
subsystems with respect to their specific reference frame. In particular, global coordinate systems
characterizing the vehicle pose for cartography and localization need to be distinguished from
vehicular reference frames used for perception purposes.

3.1.1 World frame

The world frame is given by the World Geodetic System 1984 (WGS84). As a standardized
geodetic world coordinate system it allows to describe the position of objects on the earth. The
WGS84 reference ellipsoid is employed for approximating the terrestrial surface. Its center is
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located in the geocenter, the semi-minor axis is defined by the connection between the geocenter
and a pole and the semi-major axis is located in the equatorial plane.
The coordinates of objects are represented by two angular values, namely the geographic longitude
λ ∈ [−π, π] and the latitude ϕ ∈ [−π

2 ,
π
2 ] as well as the elevation over the WGS84 ellipsoid. The

longitude describes the angle in east-west direction with origin at Greenwich meridian. The
geographic latitude represents the angle between the equatorial plane and the normal vector of
the ellipsoid at the considered point (cf. Figure 3.1.1a).
The world frame plays a role within the following contexts:

• Positioning measurements based on a Global Navigation Satellite System (GNNS) like the
Global Positioning System (GPS) or the Real-Time Kinematic Global Positioning System
(RTK-GPS) are given in the WGS84 coordinate system.

• In order to ensure exchangeability and compatibility with tools for the map generation,
elements of the digital map are represented in this reference frame. On behalf of the self-
localization and the associated map access, an intermediate step is applied: The positions
of the relevant map elements are transformed into the navigation frame (see below) in order
to enable appropriate caching strategies.

• Finally, the vehicle position calculated by the self-localization is provided to the frame work
in the world frame to ensure comparability in a standardized way.

3.1.2 Navigation frame

The navigation frame is a Cartesian metric coordinate system. It results from a local approxi-
mation of the reference ellipsoid using a projection onto cylindric, conic or plane surfaces at a
specific deployment point. The X-axis points eastwards, the Y -axis points in north direction
and the Z-axis completes the right-handed trihedron in the direction of the ellipsoid normal.
Within the geodetic context, coordinate systems of this shape exist in many different realiza-
tions. For instance, the Universal Transversal Mercator (UTM) system or the Gauss-Krüger
system (cf. [Großmann 76, Torge 03, Seidel 06]) represent important examples at which the de-
ployment point is located in the equatorial plane. In both cases, the earth’s surface is divided
into segments with respect to the longitude. The projection onto the tangential surface is then
realized locally for each segment. The Gauss-Krüger transformation maps coordinates from the
ellipsoid segment to coordinates in the X,Y -plane of the metric coordinate system with the
following properties:

• The transformation is isogonal.

• The equator is mapped onto the horizontal axis of the metric coordinate system.

• The central meridian of a segment is mapped onto the vertical axis of the metric coordinate
system.

• The transformation is isometric at least for the central meridian of a segment.
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In general, positions in the world frame and the navigation frame can be converted when know-
ing the modeling parameter of the coordinate systems (c.f. [Großmann 76]). Depending on the
chosen deployment point and the point selected for the transformation, positional errors occur
during the conversion caused by the model approximation. For the UTM- or the Gauss-Krüger
projection, these effects are reinforced at the transitional sections between neighboring segments.
For that reason, local topocentric coordinate systems play an important role within the field of
geodesy, where the deployment point, the topocenter, is not located at the equatorial plane but
lies within the local region of interest. Transformation methods between local topocentric coor-
dinates and geographic coordinates are treated in [Heck 03]. Using this concept, the projection
error diminishes when transforming positions close to the deployment point1. Therefore, in this
thesis, the deployment point is chosen in a local environment of the vehicle. It is determined at
the initialization phase of the system using a GPS measurement. Any subsequently occurring
transformation between the world frame and the navigation frame is then realized with respect
to this deployment point.
In particular, the navigation frame is used for the following purposes:

• For the localization, the vehicle position is modeled in the navigation frame.

• All elements of the digital map provided by the caching strategy are given in this reference
frame.

• The association of map elements with vehicular perception results is done in the navigation
frame.

• For the generation of continuous map elements like lane representations or road markings,
Cartesian metric coordinates are needed. For this purpose, the navigation frame is used as
well.

3.1.3 Vehicle frame

The vehicle frame is a local vehicular coordinate system, which means its origin moves with the
vehicle. More precisely, it is located at the ground projection of the center of gravity of the
vehicle. The X-axis is defined by the longitudinal axis lateral vehicle axis. To complete the
Cartesian right-handed system, the Z-axis points upwards.
In order to describe a vehicle pose relative to the navigation frame, rotations with respect to the
axis of the vehicle frame are considered as well.
According to the DIN 70000 guidelines ([DIN 01]), the rotation around the X-axis is called
rolling, around the Y -axis as pitching and around the Z-axis as yawing. The aim of the ego-
motion compensation is the calculation of the roll, pitch and yaw angles in order to account
for them in the modeling of the vehicle dynamics. The corresponding roll, pitch and yaw rates
describe the angular change per time unit.

1According to [Heck 03], the transformation accuracy between local topocentric and geographic coordinates
is at the level of a few millimeter if the geographic longitudinal difference between the considered point and the
topocenter is below 3◦
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(a) World frame with angular representation of a
point using the longitude λ and the geographic
latitude ϕ. The navigation frame at deployment
point p is depicted by the gray tangential surface.
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(b) Cartesian navigation frame at deployment point
p with YN -axis point towards north and XN -axis
pointing eastwards. Furthermore, a local vehicle
frame with XV - and YV -axes as well as the yaw
angle ψ. Illustration from the bird’s eye perspec-
tive.

Figure 3.1.1: Relation between individual coordinate systems

In particular, the yaw angle ψ ∈ [0, 2π] plays a decisive role within the scope of navigation, as
it describes the orientation of the vehicle regarding the navigation frame. Historically, for that
purpose, the angle between north (Y-axis of the navigation frame) and the vehicular longitudinal
axis (X-axis of the vehicle frame) is considered in clockwise direction.
If the pose of a vehicle is known regarding the navigation frame, then the coordinates of a point
can be easily transformed between the vehicle frame and the navigation frame.
Within this work, the vehicle frame is mainly of interest for the following purposes:

• The geometric model of the lane recognition system is defined in the vehicle frame.

• The coordinate system is an intermediate frame for the transformation of points between
the navigation frame and some sensor specific reference frames. In particular, this is the
case for cartography and localization.

• For the association of vehicular perception results and components of the digital map, the
relevant sensor measurements are given in the vehicle frame.

3.1.4 Sensor specific frames

Besides the above mentioned reference frames, each of the sensors mounted on the vehicle pos-
sesses some specific coordinate systems, which are not presented in detail at that point. Knowl-
edge on the mapping properties and the pose of a sensor allows the interpretation of its mea-
surements regarding the vehicle frame if necessary and thus enables the
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3.2 Ego-vehicle model

Having defined the relevant reference frames, the ego-vehicle model can be introduced in this
section.
Modeling the vehicle motion within the context of dynamic systems has been widely discussed in
literature [Mitschke 04, Gillespie 92], as it is the base for vehicle control and the interpretation
of sensor data.
Essentially, the parameters modeling the ego vehicle refer to its pose and its dynamics. Within
the context of this thesis, the commonly known bicycle model has been chosen to describe the
motion of the ego vehicle [Riekert 40]. This model assumes a steerable front axis and a fixed
rear axis at a constant distance. Furthermore, a constant steering angle is supposed within any
observation interval. On these conditions, for any non-zero steering angle, the vehicle moves on
a circular course, which motivates observing the curvature of the circle within the ego vehicle
model. Figure 3.2.2 illustrates the bicycle model and its relevant parameters. The vectors vf and
vb describe the velocity at the front and at the back wheel, respectively. The point S denotes
the center of mass where the resulting velocity vector v of the vehicle is marked. It is easy to
see that considering the equation

tan(δ) =
l√

r2 − l2b
(3.2.1)

with a constant steering angle δ leads to circular driving around C with radius r. Typically, one
distinguishes between the orientation angle of the vehicular velocity vector, the so-called course
angle, and the orientation of the vehicular longitudinal axis, called the yaw angle. According to
[Riekert 40], the slip angle β describing this angular difference depends on the steering angle and
the slip angle at the front and back wheel.
The considered vector describing the vehicle state at time tk ∈ R can be summarized in the
following way:

xk =



xk

yk

ψk

vk

ck

βk


=



position x-coordinate
position y-coordinate

yaw angle
absolute value of the velocity
curvature of the circular track

slip angle


∈ R6 (3.2.2)

All of these parameters refer to the navigation frame described in Section 3.1.2. As mentioned
above, the curvature is trivially related to the radius rk of the circular track by |ck| = 1

rk
for any

non-zero rk (which is given under real conditions).

3.2.1 Dynamic model of the ego-vehicle

The dynamic model is dedicated to the pose prediction of a vehicle. A comparison of common
dynamic models used for vehicle tracking is given in [Schubert 08]. For our purposes, the constant
yaw rate and velocity model has been chosen, also called constant turn rate and velocity model
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Figure 3.2.2: Bicycle model of the ego-vehicle. For any non-zero steering angle, the vehicle is moving
on a circular track with radius r around the center C. In this case, the course angle of
the vehicle does not equal the vehicle orientation (yaw angle) but it deviates by the slip
angle β.

(CTRV). As mentioned above, these assumptions lead to a circular track of the vehicle. The
following relations mainly refer to the notation in [Tatschke 11].
Let ∆tk := tk+1 − tk be the difference between any two points in time and vk be the velocity
at time tk. Then the length of the circular arc the vehicle is driving on is given by lk = vk∆tk.
Using the curvature ck of the circular track, the change of orientation can be expressed by

∆ψk = lkck. (3.2.3)

Thus, the predicted yaw angle for time tk+1 is

ψk+1 = ψk + ∆ψk = ψk + vkck∆tk. (3.2.4)

Based on the change of orientation, the relative positional translation can be formulated (regard-
ing the vehicle frame 3.1.3):

∆xk =
sin(∆ψk)

ck

∆yk =
1− cos(∆ψk)

ck

(3.2.5)

for any non-zero curvature ck. In order to calculate the predicted vehicle position regarding the
navigation frame, the relative positional changes need to be added to the position at time tk,
taking into account the course of the vehicle:
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Figure 3.2.3: Prediction of the position (xk+1, yk+1) based on the bicycle model. The axes labeling
refers to the vehicle frame at time tk. The relative position changes ∆xk,∆yk and the
relative orientation change ∆ψk are used for the pose prediction regarding the navigation
frame.

For any α ∈ [0, 2π], let

R(α) :=

(
cos(α) − sin(α)

sin(α) cos(α)

)
(3.2.6)

be the corresponding rotation matrix. According to the definitions of the vehicle and the nav-
igation frame as well as the yaw angle ψk (cf. Sections 3.1.2 and 3.1.3), the predicted vehicle
position at time tk+1 is given by(

xk+1

yk+1

)
=

(
xk

yk

)
+R(

π

2
− ϑk)

(
∆xk

∆yk

)
(3.2.7)

where ϑk := ψk + βk is the course of the vehicle.
To summarize, the dynamic model of the ego-vehicle can be expressed (in accordance to the
definitions in 2.2.1) as a function f : R6 × R2 → R with
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f





xk

yk

ψk

vk

ck

βk


, tk,∆tk


=





xk + ∆x sin(ϑk) + ∆y cos(ϑk)

yk −∆x cos(ϑk) + ∆y sin(ϑk)

ψk + vkck∆tk

vk

ck

βk


for ck 6= 0



xk + cos(ϑk)vk∆tk

yk + sin(ϑk)vk∆tk

ψk

vk

ck

βk


for ck = 0

(3.2.8)

In addition to the discussed vehicle motion model, there exist several approaches for a partial or
full ego-motion compensation concerning the translation and the rotation (pitch and roll) of the
vehicle. Besides measuring the vehicle acceleration and rotation using an inertial measurement
unit, video-based techniques, like optical flow and motion-from-structure, have been developed
in order to estimate the motion parameter [Raudies 12, Golban 09]. As this topic is not at the
main focus of this thesis, the corresponding compensation techniques are not discussed here.
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Perception

‘What you see and what you hear depends a great
deal on where you are standing.’

(C. S. Lewis, The Magician’s Nephew)
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In this chapter, the basic components of the environment perception system are presented, in-
cluding the video-based lane recognition, the detection of landmarks using laser scanners, some
intrinsic dynamics measurements of the vehicle as well as the localization methods used for
cartographic purposes and the rough positioning of the self-localization.
Figure 4.0.1 shows the experimental vehicle, including some sensors relevant to this work:

• Monocular gray value camera behind the windshield, type IDS uEYE UI-6220SE-M-GL

• Laser scanners in the front of the vehicle, type SICK LD-MRS-400001

• GPS localization unit, type Novatel OEMV

• Real-time kinematic inertial measurement unit (RTK-GPS) as reference localization sys-
tem, type OXTS RT3003

The technical specification of the experimental vehicle and the used sensors can be found in
Appendix A.
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laser scanner

Figure 4.0.1: Experimental vehicle and the sensor setup relevant to this work.

4.1 Temporal and spatial interpretation of sensor data

In order to interpret the available sensor data appropriately, a temporal and spatial alignment
within the overall system is crucial.

The spatial alignment of sensors with respect to the experimental vehicle is either known by the
installation position or determined using appropriate calibration methods. Within this context,
a distinction is made between the intrinsic calibration, where the basic mapping parameters of
a sensor are calculated, and the extrinsic calibration, where the aim is to determine the pose of
a sensor. In the present case it is assumed that all considered sensors are well-calibrated and,
knowing their pose parameter, their measurements can be transformed from a sensor specific
coordinate system into the vehicle frame if necessary.

Regarding the interpretation and association of measurements within the overall system, the
temporal alignment of sensor data is essential. Due to a sophisticated method described in
[Huck 11] and [Westenberger 11], the association of exact timestamps (temporal reference points)
to sensor measurements is realized so that for each measurement considered in the following
sections a corresponding timestamp tk ∈ R+ is available that represents the beginning of the
sensorial acquisition. If any quantity is indexed by some k ∈ N, then it is related to its value at
time tk.

Furthermore, the camera and all laser scanners are synchronized. That means the sensors start
their acquisition simultaneously at a defined point in time controlled by an external trigger signal.
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4.2 Lane recognition

The lane recognition is a video-based system that allows the parameter estimation of a geometric
road model in the local vehicular environment. For that purpose, the gray-value video camera
integrated in the vehicle is used. Some appropriate image processing techniques allow the online
extraction of road markings in digital images from the camera. The resulting measurements play
several roles within this work: First, they represent the measurements of an observation model
in terms of the state estimation (cf. Section 2.2.2) in order to estimate the parameter of the local
road model. Second, the road marking measuring points form the data basis for the generation of
digital map elements like road marking or lane representations. Finally, the lane recognition plays
an essential role for the association with map elements regarding the self-localization approach.
In order to apply the image data of the camera for the lane recognition, it is necessary to depict
the camera modeling and, beyond that, the used image model. Afterwards, the described contour
extraction allows the identification of distinctive gray-value changes in the camera image. Finally,
modeling the lane recognition as a dynamic system explains the relation between the parameter
estimation and the preceding contour extraction. The basic version of the lane recognition goes
back to the system presented in [Tatschke 11]. This approach has been extended regarding the
road model and adapted to the present framework requirements.

4.2.1 Camera modeling

A camera is a sensor that measures the light energy emitted by objects within its vision cone in
direction of the camera. The light passes through the aperture controlling the exposure as well as
through a focusing lens system and finally reaches a photosensitive area. The absorbed radiation
creates some charge on the sensor surface, whose quantity can be measured and processed finally.
Assuming an extended pinhole camera model (cf. [Hanning 10]), the mapping process can be
described as follows:
The camera frame is a three-dimensional Cartesian coordinate system that has its origin within
the camera. The X-axis points to the right, the Y -axis downwards and the Z-axis completes the
right-handed system by pointing in the direction of the optical axis. Let S ⊂ R3 be the vision
cone of the camera. Then, T : S → (R3 \ {0}) describes the transformation from the vehicle
frame (cf. Section 3.1.3) to the camera frame by rotation and translation. Furthermore, let

Pr : R2 × (R \ {0})→ R2,

 x

y

z

 7→ (
x
z
y
z

)
(4.2.1)

be the projection from the camera frame onto the image plane of the camera. The modeling of
optical distortions (for example radial, tangential or thin-prism distortions) can be incorporated
by a mapping δ : R2 → R2. The transformation κ : R2 → R2 with a, b, c, u0, v0 ∈ R converts
camera coordinates (in metric units) to image coordinates (in pixel units):

κ :

(
u

v

)
7→

(
a c

0 b

)(
u

v

)
+

(
u0

v0

)
(4.2.2)
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The resulting camera mapping K : S → B, which transforms any point p ∈ S of the vision
cone of the camera to a point in the image rectangle B ⊂ R2 within the image plane, can be
summarized by

K : p 7→ (κ ◦ δ ◦ Pr ◦ T )(p). (4.2.3)

The sensor surface of the camera is usually organized in a matrix-like arrangement of individual
sensors, the so-called hardware pixels. The light energy inciding on an individual sensor is
integrated spatially and temporally (according to the exposure). After the quantization of these
individual measurings to a finite number of discrete values {0, . . . , 2d − 1}, d ∈ N+, the digital
camera image can be defined: Each hardware pixel of the (w×h)-matrix arrangement with w, h ∈
N+ is associated with a pixel coordinate pair (p1, p2) ∈ Pix := {0, . . . , w − 1} × {0, . . . , h − 1}.
Finally, any function g : Pix → {0, . . . , 2d − 1} describes a digital image, which, in case of a
gray-value camera, assigns a gray-value intensity to each pixel coordinate.
Let the mapping ν : B → Pix denote the identification of hardware pixels with pixel coordinates
mentioned before. Then each point p ∈ S within the vision cone of the camera can be associated
with the pixel coordinate (ν ◦K)(p).
Besides this projection, the corresponding reprojection is often of interest for image processing
purposes as well. The latter maps pixel coordinates to view rays.
Let T−1 : T [S]→ S, δ−1 : R2 → R2 and κ−1 : B → R2 denote the inverse mapping of T, δ and κ,
and let

Pr? : R2 → R2 × (R \ {0}),

(
x

y

)
7→

 x

y

1

 (4.2.4)

be the reprojective mapping onto the z = 1 plane of the camera frame. Using the camera
reprojection

K? : B → S, b 7→ (T−1 ◦ Pr? ◦ δ−1 ◦ κ−1)(b) (4.2.5)

and the focal point f ∈ R3, each image point b ∈ B can be mapped to the view ray

R(b) :=
{
f + λ · (K?(b)− f) ∈ R3

∣∣ λ ≥ 0
}
. (4.2.6)

The parameter calculation of the camera projection and reprojection is called camera calibration.
An extensive treatment of this topic can be found in [Hanning 10] or [Hanning 05].

4.2.2 Contour extraction

The bright appearance of road markings usually forms a sharp contrast to the underlying road
surface in order to facilitate lane keeping for the driver. This circumstance can be used for
detecting road markings using image processing techniques. Within this context, the extraction
of distinctive gray-value changes in the camera image plays a decisive role. Since the extraction of
contours is used in a wide range of image processing applications, there exist numerous definitions
and extraction approaches for contours (cf. [Smith 07, Kellner 06, Haralick 92]).
In the present case, the methods described in [Haas 00] and [Pisinger 03] are applied. The core
algorithm can be summarized as follows:
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1. Extraction of contour points
A contour point is a pixel coordinate located on a distinctive gray-value change in the
image. For any gray-value image, the extraction step uses some discrete gradient filters to
result in a set of contour points.

2. Thinning and decomposition into unbranched contour point sequences
Using a context sensitive thinning method, the contour points determined this way are
processed and decomposed into connected contour point sequences. In order to avoid
outliers and isolated points as well as for focusing on prominent components, some further
filtering steps of the point sequences are applied.

3. Polygon fitting
The individual contour point sequences are approximated by polygons enabling a compact
encoding of the resulting contours.

The result of the contour extraction is shown in Figure 4.2.2b in an exemplary manner. Using the
terms of Section 2.1.1.5 and 2.1.1.6, the resulting contour C ⊂ P∞ approximated by polygons is
picked up again within the scope of the observation model of the lane recognition.

4.2.3 Local road model

During the last decades, a multitude of approaches to video-based lane recognition systems has
been proposed in the literature. As a base for many lane keeping applications, some of these
methods have reached their maturity phase in the automobile industry. A survey of different mod-
eling approaches is given in [McCall 06], some examples are [Tatschke 08, Polychronopoulos 07,
Dickmanns 92]. Most of these approaches are based on the visibility of road markings, which
form a strong contrast to the road surface. Besides, there exist some methods dedicated to the
detection of the drivable area on unmarked roads (cf. [Schindler 09, Franke 07]). The geometric
road model used in this work is widely used in the literature and proved of value in many lane
recognition systems. The basic version of the model goes back to work in [Dickmanns 92], which
is also shown in detail in [Tatschke 11]. In this approach, the geometry of the locally considered
road markings is described by an approximated clothoid model (cf. Section 5.2.2). Using a
small-angle approximation and the Taylor approximation of the clothoid model, the ego-lane is
represented by a parametrization of the left and the right road marking1, respectively:

mleft : [0, L]→ R2, l 7→

(
l

oy + w
2 + ϕl + c0l2

2 + c1l3

6

)
(4.2.7)

with L ∈ R+ and

mright : [0, L]→ R2, l 7→

(
l

oy − w
2 + ϕl + c0l2

2 + c1l3

6

)
. (4.2.8)

1Since, in reality, any road marking has a certain width, its geometric description refers to the middle of the
road marking.
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(a) Input image (b) Contour extraction

(c) Predicted measurements Y
(P )
FS (blue) and corre-

sponding search paths (green)
(d) Extracted real measurements YFS (red) using Algo-

rithm 2

(e) Residual (yellow) of the correspondences between
predicted and real measurements

(f) Detail of Figure 4.2.2e

Figure 4.2.2: Processing steps of the lane recognition
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Here, oy ∈ R represents the lateral offset of the vehicle with respect to the middle of the lane
and w ∈ R is the lane width. The quantities c0 ∈ R and c1 ∈ R are called starting curvature and
curvature change rate, respectively, since the curvature c : R→ R of a clothoid changes linearly
with its argument: c(l) = c0 + l · c1. The angle ϕ ∈ [0, 2π] describes the difference between the
orientation of the vehicle and the tangential direction at the starting point of mleft.

The individual components of the equations above refer to the X,Y -plane of the vehicle frame
(cf. 3.1.3). Figure 4.2.3 illustrates the local road model.

ϕ

oy

w

mright

mleft

x

y

Figure 4.2.3: Geometric road model with lateral offset oy, lane width w, curvature parameters c0 and
c1 as well as the relative orientation angle ϕ. The axes refer to the vehicle frame.

To summarize, the state vector

x = (oy, w, c0, c1, ϕ)T (4.2.9)

describes the parameters that are estimated using the techniques presented in chapter 2.2.2.

4.2.3.1 Dynamic model of the lane recognition

Assuming that all considered parameters remain constant within any observation interval ∆t, a
corresponding linear dynamic model can be formulated as follows:
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f : R5 × R2 → R5, (x, tk,∆tk) 7→


1 0 0 0 0

0 1 0 0 0

0 0 1 vk∆tk 0

0 0 0 1 0

0 0 0 0 1

x, (4.2.10)

where the velocity of the vehicle at time tk is denoted by vk. In the strict sense, the dynamic
model of the ego-vehicle (cf. Section 3.2) would have to be considered in order to predict the
relative pose parameter oy and ϕ. However, this aspect is omitted at that point since the
local road model is defined with respect to the vehicle instead of a definition in the navigation
frame. Based on empirical investigations, no significant losses due to this simplification have
been observed.

4.2.3.2 Observation model of the lane recognition

The integration of measurements into the filtering process requires the definition of an observation
model. In this case, determining a predicted measurement based on a predicted state is realized
by sampling the geometric model at predefined points followed by their projection into the camera
image according to Section 4.2.1. For that purpose, a finite sampling sequence I ⊂ [0, L] of the
road model is considered. This allows defining the observation model as a family of functions
(hleft,i)i∈I , (hright,i)i∈I : R5 × R→ B for any state xk ∈ R5 at time tk and i ∈ I with

hleft,i(xk, tk) = K

(
mleft(i)

0

)
and hright,i(xk, tk) = K

(
mright(i)

0

)
. (4.2.11)

Consistent with the definitions in Section 2.2.2, the corresponding predicted measurements result
from applying the observation models to a given predicted state xk ∈ R5. With

Y
(P )
L := {hleft,i(xk, tk) | i ∈ I} and Y

(P )
R := {hright,i(xk, tk) | i ∈ I} , (4.2.12)

the image points
Y

(P )
LR := Y

(P )
L ∪ Y (P )

R (4.2.13)

form a set of predicted measurements of the lane recognition at time tk. In order to calculate
the residual needed for the filtering step, each predicted measurement must be associated with
a real measurement. As indicated in Section 4.2.2, for that purpose, the extracted polygonal
representation of image contours is picked up again. For each predicted measurement, a search
path in the form of a line segment in the image coordinate system is defined first. Its starting
point and endpoint are related to the corresponding sampling position of the road model in the
following way: For a parameter d ∈ R+ and for all i ∈ I, the search path on the left side of the
road model with

aleft,i = K

( mleft(i)

0

)
+

 0

d

0


 ∈ R2, bleft,i = K

( mleft(i)

0

)
−

 0

d

0


 ∈ R2

(4.2.14)
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is given by

sleft,i := {(1− λ) · aleft,i + λ · bleft,i | λ ∈ [0, 1]} (4.2.15)

and analogously for the right side of the road model. The predicted measurements including
their corresponding search paths are depicted in Figure 4.2.2c. For each predicted measurement
p ∈ Y (P )

LR , Algorithm 2 extracts a real measurement, if applicable. Therefore, the intersection
points of the corresponding search path and the contour C ⊂ P∞ within the image rectangle
B ⊂ R2 of the image g are considered first. With the aid of the image gradient gradu(g)(x)

in u-direction of the image coordinate system at the contour intersection point x, it is decided
whether the intersection point potentially belongs to the left or to the right edge of a road
marking. The basic idea is that a positive u-component of the image gradient direction indicates
a gray value change from dark to bright, which rather corresponds to the left edge of a road
marking. If there exist suitable contour intersections at both sides of a road marking, their
middle point is determined and selected as the corresponding real measurement. However, if
a contour intersection point is located only on one of the two sides, then this point is chosen.
Finally, if no intersection could be identified at all or if the order of potential edge points is not
plausible, then no real measurement can be associated with the predicted measurement. In this
case, the filtering update does not account for that predicted measurement at this particular
time. In [Tatschke 11], some more heuristic filtering steps, which also validate the local direction
of the contour at the intersection, are proposed for the extraction of contour intersections.

Applying Algorithm 2 to all predicted measurements p ∈ Y
(P )
LR results in a finite set of corre-

sponding real measurements YLR ⊂ B, which is depicted exemplarily in Figure 4.2.2d. Finally,
this association allows the calculation of the filter residual and the measurement update (cf.
Figure 4.2.2e and 4.2.2f). Furthermore, the real measurements are used for the generation of
digital map elements and they serve for the association with road markings of the map in the
context of the self-localization.

The process and measurement noise covariance matrices modeling the noise processes within
the state estimation need to be determined by system identification techniques. Some appro-
priate methods on this topic are found in [Soderstrom 89, Goodwin 77, Graupe 72, Eykhoff 74,
Walter 97].

Remark 4.2.3.1
A video-based method for detecting and classifying painted arrow markings on the road is pro-
posed in [Maier 11a]. After an identification step of arrow marking candidates in the input
image, the contour is extracted and reprojected onto the X,Y -plane of the vehicle frame. Then,
a curve-based classification approach is applied in order to compare the reprojected contour with
some standardized arrow prototypes represented as arc splines.

As arrow markings on the road can be seen as landmarks, this method can be used for both
enriching digital maps and supporting the self-localization by comparing online detected arrow
markings with corresponding elements of the digital map.



38 Chapter 4. Perception

Algorithm 2 Measurement association
Input: A predicted measurement p ∈ Y (P )

LR and a contour C ⊂ P∞ of the image g

Output: A real measurement q ∈ B (image rectangle B) corresponding to p if applicable

Calculate the search path s corresponding to p according to (4.2.15)
// Determine all contour intersections S ⊂ B of s within g:
S = B ∩ s ∩

(⋃
k∈K tr(k)

)
// Subdivide S into potential edge measurements of a road marking
Sleft = {x ∈ S | gradu(g)(x) > 0} resp. Sright = S \ Sleft

Q = ∅
if Sleft 6= ∅ then

// Calculate the closest point to p within Sleft:
qleft = argmin

r∈Sleft

‖p− r‖

Q = Q ∪ {qleft}
end if
if Sright 6= ∅ then

// Calculate the closest point to p within Sright:
qright = argmin

r∈Sright

‖p− r‖

Q = Q ∪ {qright}
// Check the order of the point selections qleft and qright:
if Sleft 6= ∅ ∧ π1(qright) < π1(qleft) then
Q = ∅

end if
end if
if Q 6= ∅ then

// Calculate the mean of Q:
q = 1

cardQ

∑
r∈Q r

return q

end if

return ∅

4.3 Intrinsic vehicle measurements

The experimental vehicle used within this scope provides a range of intrinsic measurements giving
valuable clues to relevant parameter of the vehicle dynamics. This includes

• the absolute value of the vehicular velocity v ∈ R+
0 , which is determined using a wheel

speed sensor.

• the yaw rate ψ̇ ∈ R of the vehicle. This quantity describes the rotation rate of the vehicle
regarding the Z-axis of the vehicle frame. The yaw rate can be measured by a rate sensor.
For any velocity v ∈ R+

0 , the relation between the yaw rate and the curvature c ∈ R of the
circular track described in the ego-vehicle model (cf. Section 3.2) is simply

c :=

{
ψ̇
v for v > 0

0 for v = 0
(4.3.16)
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• the slip angle β ∈ [0, 2π], defined by the angular difference between the vehicle orientation
(yaw angle) and its driving direction (course angle). The relation between these terms is
explained in Section 3.2.

The CAN-Bus of the vehicle transmits all of these measurements to the relevant processing units.

4.4 Detection of landmarks using laser scanners

In the front area of the vehicle, a total of three laser scanners are available for environment
perception purposes. Such a sensor is based on time-of-flight measurements of pulsed laser emis-
sions. Using a rotating mirror, it scans the environment in a fan-shaped way with several planes.
The interpretation of reflected echo pulses allows reconstructing 3D measuring points, which in
turn yield conclusions on objects in the current scene. Based on that, an adequate processing
of this laser data in terms of a grid-based fusion enables the extraction of landmark hypotheses
(cf. [Weiss 07, Heenan 05]). Within this thesis, a landmark represents on object of small lateral
dimension, like traffic signs, reflection posts or trees. For each acquisition time of the sensor,
the processing system applied yields a list of landmark hypotheses

{
pi ∈ R2

∣∣ i = 1, . . . , n ∈ N
}
,

represented by their coordinates in the X,Y -plane of the vehicle frame.
Due to the measuring principle of the laser scanner, the corresponding data processing does not
allow a direct type classification of a landmark. However, at least its diameter can be determined
approximately. This quantity, in turn, can ease the association of locally detected candidates
and landmarks of the digital map. The automated classification of landmark hypotheses, for
example regarding the type of a traffic sign, can be achieved using image processing techniques
within the scope of sensor data fusion [Janda 11, Pangerl 10]. These approaches do not only
simplify the association of landmarks but also enable the automated enrichment of digital maps
with classified landmarks.

4.5 Satellite-based localization

To determine the global position and orientation of a vehicle, basically two satellite-based lo-
calization units are available. Both systems provide the vehicle position in the world frame
(WGS84-coordinates, described in Section 3.1.1) as well as the yaw angle, which describes the
vehicle orientation regarding north (cf. Section 3.1.3).

4.5.1 GPS

The Global Positioning System (GPS) enables the calculation of positions based on satellites
orbiting the earth. Using radio-communication, these satellites regularly emit their own posi-
tions together with a corresponding timestamp. Basically, any GPS device receiving at least four
different satellite signals is capable of determining its own position based on the time-of-flight in-
terpretation of the transmitted information (cf. [Hofmann-Wellenhof 03, Strang 08, Grewal 01]).
The orientation of a vehicle can be determined using integrated navigation techniques based
on the temporal filtering of positions or by considering measurements of an electronic compass.
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Thus, the orientation of the vehicle is not measured directly by the GPS system, but it is added
to the resulting pose measurements for the sake of simplicity: λ ∈ [−π, π]

ϕ ∈ [−π
2 ,

π
2 ]

ψ ∈ [0, 2π]


(GPS)

=

 geographic longitude
geographic latitude

yaw angle

 (4.5.17)

The accuracy of the satellite-based pose estimation is mainly dependent on atmospherical noise
effects as well as multi-path propagation errors due to reflecting objects (such as buildings and
trees). Subject to these environmental circumstances, the positional accuracy of the standard
GPS is up to single- or low two-digit range of meters.
Regarding the self-localization approach in this thesis, the standard GPS is used for the system
initialization and a rough positioning. This positioning technique can be considered as a low-cost
solution and is thus expected to be integrated in future vehicles on a large scale.

4.5.2 RTK-GPS

The satellite-based positioning results can be enhanced considerably by integrating inertial mea-
surements of the vehicle dynamics and evaluating the carrier phase of the GPS signals (cf.
[Wendel 07, Groves 07]). Using an Inertial Measurement Unit (IMU), the rotation rates and
accelerations of the vehicle can be measured precisely. By integrating these measurements in
the localization algorithm, the so-called Real-Time Kinematic (RTK)-GPS system reaches a
global accuracy of 2 cm on good terms when using particular differential correction services like
[ASCOS 12].
Analogous to the standard GPS, the measurements of the RTK-GPS unit can be summarized to λ ∈ [−π, π]

ϕ ∈ [−π
2 ,

π
2 ]

ψ ∈ [0, 2π]


(RTK−GPS)

=

 geographic longitude
geographic latitude

yaw angle

 (4.5.18)

This high-cost positioning solution is used for the generation of the digital map as well as the
assessment of the self-localization approach presented in this work. In the latter case, the RTK-
GPS system is used as a high-precision reference system as detailed in [Vogel 07].
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Digital Map

‘All the roads we have to walk are winding.’
(Oasis, English rock band)
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Digital maps represent abstractions of the reality. Within this context, a multitude of different
peculiarities exist regarding the level of detail and abstraction. This diversity allows focusing on
the specifics of the considered environment. Depending on the aim of the map usage, different
requirements arise concerning the modeling and the representation of the map data.
In the introductory Chapter 1 the digital map was already presented as an important component
of the self-localization. Indeed, the map represents the base for a whole range of driver assistance
systems. That way, it does not only contain the map elements relevant for the self-localization
presented in this work, but it also provides information that is useful for many further applica-
tions.
In order to enable this additional value, a closer look at the requirements arising from different
applications is necessary before making decisions on the map modeling. Besides the content-
related requirements, some more general aspects have to be taken in account: Mathematical,
numerical and algorithmic particularities of the representation and the processing of map data
must be considered to ensure an efficient usage of the map.
In Section 5.1, the requirements for the digital maps are collected. The rather informal conditions
from the applications’ point of view are then translated into technical aspects. After a discussion
of common approaches known in the literature in Section 5.2, the map modeling of this work is
presented in Section 5.3.
Furthermore, Section 5.4 depicts appropriate methods for the generation of the digital map. It
is shown how a curve representation can be calculated whose accuracy is controlled while its
efficient processing and a compact data storage is achieved.
The last part is dedicated to concepts of practical usage and fast access to some map information.
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5.1 Requirements analysis

In the following, some requirement aspects are shown that arise from map-based driver assistance
systems and from which the technical conditions on the map modeling are derived.

5.1.1 Requirements from the applications’ side of view

5.1.1.1 Map-based Self-localization

The basic idea of the map-based self-localization is the association of vehicular perception results
with map elements in order to infer the pose of the vehicle. For that purpose, the map necessitates
an adequate representation of the comparable landmarks.
For the matter in hand, this includes storing some information on

• landmarks of low lateral dimension

– traffic signs

– reflection posts

– trees

• road markings, like

– continuous markings

– dashed markings

– arrow markings

– stop lines

Not only need these elements to be represented geometrically by their shapes and poses. Some
additional semantic attributes are also required specifying their real meaning, like the type of a
traffic sign.

5.1.1.2 Lane-level accurate information

For many applications in the field of track guiding and navigation, detailed information is required
on the lane a vehicle is driving on. Therefore, individual lanes need to be stored in the map.
Lane keeping systems use the curvature information of lanes in order to generate curve speed
warnings. In particular, for automated / autonomous driving, highly accurate reference tracks
are necessary. For these purposes, the curvature of a reference lane is commonly used for steering
control. In order to avoid a non-smooth steering maneuver, both the precision of curvature and
its continuity are desirable.
Furthermore, the interpretation of situations requires information on the drivable direction of
individual lanes, especially in overtaking scenarios. The allowed driving directions at lane-level
need to be provided by the map.
The elevation profile of a lane is of multiple importance: If a vehicle is driving towards a camber
hiding the upcoming course of the road, an assistance function can react on the resulting increase
of safety risk if the digital map allows to suggest the occlusion (cf. figure 5.1.1).
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60

α

d1

d2

Figure 5.1.1: Occlusion caused by a camber. The lane elevation profile of a digital map enables safety-
related assistance functions in this case. Furthermore, the local inclination angle α allows
the correction of vehicular measured distances (d1) to objects with respect to distances
regarding the planar surface: d2 = cos(α) · d1.

For the interpretation of situations, assumptions on the local road surface are often required.
Within this context, an elevation profile stored in the digital map allows a more detailed modeling
of the vehicular environment. For instance, some inclination information of a lane enables the
correction of a vehicular measured landmark position by accounting for the local rise, as depicted
in Figure 5.1.1. This correction plays a role in the vehicle self-localization (cf. Section 7.2.3.4).
Finally, the width of a lane represents an essential information for assistance functions dealing
with the drivable space. Hence, for accuracy reasons, a continuous lane width is preferable to
a static value. According to [BFV 93], winding road sections are typically constructed with an
extended lane width to provide a safer transition for long vehicles like trucks.

5.1.1.3 Pose prediction

Safety applications like collision avoidance and turn assistance systems require the temporal and
spatial prediction of vehicles in order to react at an early stage in case of critical situations.
Therefore, an estimation of a vehicle’s position at a certain point of time is needed. This can be
realized by suggesting the anticipated driven path based on the velocity of the vehicle and the
time difference considered for the prediction. Taking into account the course of lanes stored in a
digital map, a pose prediction of the vehicle is achieved.

5.1.1.4 Map matching

The situation analysis represents an important component in safety related assistance systems.
The aim is to assess a traffic situation based on the environment model of a vehicle in order
to initiate reactions like warnings, evasion maneuvers or emergency braking. The environment
model is typically enriched by the vehicular perception. Moreover, cooperative systems inte-
grate information transmitted from other vehicles or the infrastructure using communication
technologies.
In the context of risk assessment of a situation, an important task is to associate vehicles from
the environment model to individual lanes of a digital map, which is commonly called map
matching. This assignment allows deciding whether a different vehicle is driving on the same
lane as the ego-vehicle. Thus, the association of objects to their most likely lanes represents
another requirement on the map and on the algorithms processing the map data, respectively.
Figure 5.1.2 shows a scenario including the ego-vehicle and three other vehicles driving on a
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three-lane road. The association of individual lanes and vehicles is realized by their minimal
distance.

Lanes

Ego-vehicle

Other vehicles

A

B

C

Figure 5.1.2: Map matching of vehicles. Vehicle A is located on the opposite lane of the ego-vehicle,
which in turn shares the lane with vehicle B. C is driving on a parallel lane.

5.1.1.5 Intersection assistance

Intersection assistance systems are designed to support the driver for safe transitions at road
intersections. In these complex scenarios, the situation analysis is of particular importance. For
an automated emergency braking, the distance between a vehicle and elements of the infrastruc-
ture, like stop lines or lines of sight, need to be observed over time. In this context, a digital
map is useful if it contains such structures in the data base. Furthermore, the distance between
a vehicle and, for instance, a stop line on the associated lane must be computable based on the
map information.

5.1.2 Requirements from a technical point of view

Based on the requirements from the applications’ side of view, some technical aspects are derived
in the following.

5.1.2.1 Accuracy of the digital map

As mentioned in the introduction, the required accuracy of the vehicle self-localization is in the
range of 1 m regarding the position. As the digital map contains the structures needed by the
self-localization, the accuracy of the digital map needs to be at least as high as required by the
localization. In order to reduce the sources of error for the localization, it is reasonable to require
a considerably higher accuracy of the offline generated map. Assuming that the accuracy of the
referenced map elements exceeds the localization accuracy by one order of magnitude, the global
precision requirements of the digital map lie in the range of a few centimeter.
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However, the question arises which methods allow measuring the actual accuracy of a digital
map. For that purpose, Section 7.1.4 lists appropriate approaches for the map evaluation.

5.1.2.2 Curve representation

For continuous elements of the digital map, like road markings or lanes, a curve representation
as defined by Section 2.1.1.1 has significant advantages compared to a representation as a finite
point sequence:

• Due to the continuity of curves, best approximating points for a given reference point can
generally be calculated with an arbitrary accuracy.

• In principle, the data volume for storing a curve is lower than that of a point sequence, as
only the defining parameters of the curve need to be represented, in contrast to all elements
of a point sequence.

5.1.2.3 Efficient distance calculation

Almost every requirement from Section 5.1.1 implies the calculation of distances between points
and continuous structures of the digital map:

• For the self-localization (cf. 5.1.1.1), distances between measuring points arising from the
environment perception and continuous representations of road markings must be calcu-
lated.

• Likewise, providing lane-level accurate information (cf. 5.1.1.2) requires that the lane of
smallest distance to a vehicle position is determined.

• Again, the map matching of vehicles (cf. 5.1.1.4) requires the identification of the lane
next to the position of a vehicle. Hence, distances between points and curves must be
calculated.

• Finally, the information on distances between vehicles and elements of the infrastructure
(cf. 5.1.1.5) immanently requires their calculation.

As a consequence, an essential technical criterion on the digital map is given by the efficient
calculation of point to curve distances. Formally, for any point x ∈ R2 and a curve ω, the
distance d(x, ω) = dist (x, tr(ω)) needs to be determined, that is, a best approximating point
x0 ∈ tr(ω) has to be found such that ‖x− x0‖2 = d(x, ω). As it is expected that these calculations
are required at high frequency during the runtime of the system, the efficiency of the involved
computations is decisive.

5.1.2.4 Data volume

In principle, the data volume needed for storing the digital map should be as small as possible.
On the one hand, this is justified by the restricted capacity of the memory medium of the target
vehicle. On the other hand, a higher amount of data (regarding the same type of representation)
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requires, in turn, a higher computational effort for its processing. However, the processing time
is strongly limited due to the real-time conditions of the considered application.
Regarding the curve representation of the digital map, the above mentioned requirement implies
an efficient encoding of the curve data. In other words, the curve should be completely repre-
sented by as few parameters as possible. Within this context, the minimum description length
(cf. [Grünwald 05, Rissanen 85]) can be interpreted as the minimal data volume (in bits or the
number of parameters) which is required for encoding the curve.

5.1.2.5 Offset curves

As many of the structures, like road markings and lanes on road sections, are widely parallel by
means of ε-offset curves (cf. Section 2.1.2.1), the calculation of such curves is essential. That
way, the map can be extended with parallel structures in a simple way without the need for an
additional data base.
From a technical point of view, determining offset curves for a given representation is a further
criterion.

5.1.2.6 Real-time access to map sections

During the runtime of a map-based application, the efficient access to a map section is decisive.
This means that all relevant map information has to be provided for any (reasonable) chosen
region of interest in real-time. Thus, some appropriate caching strategies are mandatory.

5.1.3 Map modeling approaches in the literature

Depending on the assistance application that the maps are intended to supply, the level of
abstraction and thus the representation of the digital map varies significantly in the literature.
Besides the explicit modeling of lanes as curves, which is discussed in the following sections,
some examples of map modeling approaches are given for both comfort and safety applications.
One of the first comfort applications based on digital maps was for navigation purposes [Groves 07,
Grewal 01]. In order to find the shortest or fastest route from one point to another, mainly the
distances of locations and connecting roads are of interest. Therefore, an abstract graph-based
representation of the map is sufficient and an accurate geometric model is not needed. These
kind of maps are enriched by addresses and points of interest to provide comfort functions to the
driver. In addition, current traffic information on congestions can be included using communi-
cation services.
Going more into detail, maps can contain information on the individual road types and pavement
state [Herold 05], which is useful for road maintenance and comfort applications like adaptive
light control or entertainment functions. Based on map data, new concepts on increasing fuel
efficiency and traffic optimization are developed.
In general, for safety applications, a more detailed representation of maps is needed. Originated
from the field of robotic exploration, Simultaneous Localization And Mapping (SLAM) approaches
(cf. [Wang 11, Nüchter 10, Aycard 10]) are employed for localization and mapping purposes of
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road vehicles. SLAM maps are typically represented in a feature-based way, i.e. using attributed
point clouds.
Furthermore, there exist map representations using closed polygons [Betaille 10] and extensions
to round shapes [López-Pérez 12] in order to describe the drivable area of a road. This modeling
allows characterizing complex road boundaries in urban environments.
The ADASIS protocol [Ress 08] defines a standardized access to map data for transportation
systems. While the topological correctness and the relative accuracy of the provided information
is high, the global accuracy and the level of detail of map elements required for the work at hand
can not be provided up to now. Roads are commonly represented by a single curve while their
attributes on the number and direction of lanes allow approximating parallel lane instances.

5.2 Discussion of curve models

In this section, several established curve models are discussed regarding their suitability for
modeling continuous structures in digital maps. The set of criteria is based on the requirements
defined in the previous sections.

5.2.1 Polygons

The most elementary but widely used (cf. [Mattern 10a, Gerlach 09, Noyer 08, Xu 96]) model for
continuous structures in digital maps are polygons (cf. Section 2.1.1.6). A survey of methods for
the generation of lane representations based on different curve models is given in [Chen 10]. The
OpenStreetMap (OSM) project [OSM 12] generates and provides map data based on the creative
commons license. Its basic geometric primitives comprise nodes (points) and ways (polygons).
The complexity of calculating distances between points and polygons or determining best ap-
proximating points is comparable to the complexity of circular arc splines (cf. Section 2.1.3):
After the calculation of the polygon segment that is closest to the given point, the distance
calculation can be achieved in a simple closed form.
A polygon does not contain any curvature information since for each segment the curvature
disappears. Moreover, any tangent-continuous transition of segments is impossible.
In general, any offset curve of a polygon is an arc spline, as depicted in Section 2.1.2. Thus,
polygons are not invariant regarding offsetting.
Since any polygon of segment number n ∈ N is already uniquely defined by its starting point, its
breakpoints and the endpoint, storing a polygon, requires 2n+ 2 (floating point) numbers.
Concerning the approximation of a point sequence by a polygon, there exist several methods in
the literature (e.g. [Douglas 73, Ghosh 91, Kolesnikov 03]). Respecting any predefined tolerance,
the Minimum Link Path (MLP) ([Suri 86]) yields an approximation with the minimal segment
number:
Given a simple closed polygon P (in this case P approximately represents the ε-offset of the input
point sequence) with a source and destination vertex, the MLP-algorithm produces a sequence of
line segments connecting the source and destination inside P with a minimal number of segments.
In [Pink 10], a method for the generation of polygonal map elements based on aerial images is
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proposed. The image regions of road markings that are visible in an aerial image are extracted
using image processing techniques, followed by a line fit of the connected components.
Since polygons do not provide any immediate curvature information, their suitability for modeling
road sections is limited. In principle, the individual segments could be attributed additionally
with separately determined curvature information. However, no continuous curvature can be
realized using that model. Curved road sections can only be approximated using a large set
of breakpoints, in order to guarantee a given positional accuracy. This, however, increases the
data volume of the digital map and thus the computational effort of processing algorithms.
Furthermore, the calculation of point to curve distances is hampered since more segments have
to be considered for the distance calculation.

5.2.2 Clothoids

According to the road construction regulation in [BFV 93] and [Richter 08], a turn of a typical
road in rural areas consists – at least constructionally – of a sequence of a straight line segment,
a clothoid, a circular arc, a clothoid and again a straight line segment. Clothoids are usually
defined using the Fresnel integrals. For instance, the clothoid starting at the origin with curvature
zero is determined by

K : [0, L]→ R2, K(t) := a

(
C(t/a)

S(t/a)

)
, (5.2.1)

C(t) :=

∫ t

0
cos
(π

2
s2
)
ds, S(t) :=

∫ t

0
sin
(π

2
s2
)
ds, (5.2.2)

a =
√
πLR, (5.2.3)

where L ∈ R is the curve length, R ∈ R is the curvature radius at the endpoint of the clothoid
and a ∈ R is a scaling factor. The curvature of a clothoid changes linearly with respect to the
arc length. This property is used for the road construction since, that way, clothoids provide
a smooth steering phase when passing the lane sections. Regarding the modeling of curvature,
clothoids are the best curve model for this kind of road since they equal the constructional model.
However, clothoids show certain disadvantages in digital maps: Curve approximations, point to
curve distance calculation, the computation of some best approximating points and even the
drawing of the curve are computationally expensive as they imply nonlinear optimizations.
In [Walton 05, Walton 90], clothoid splines are treated, which in analogy to Section 2.1.1 repre-
sent curves that are piecewise defined by clothoids and some approximation methods based on
input polygons are proposed. In general, the offset curve of a clothoid is not a clothoid any-
more. However, there exist approximate solutions ([Meek 90]). Regarding the approximation of
clothoids and their offset curves by other curve types, a strategy is proposed in [Wang 01] that
relies on Bézier curves and B-splines. Furthermore, an arc spline approximation of a clothoid
is presented in [Meek 04]. The authors show that, using n-times the number of segments, the
approximation error behaves like O(n−2).
Regarding the data volume, at least the starting point and the tangential direction at the starting
point must be stored together with two values out of either the curve length, the scaling factor
or the curvature at the end point.
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5.2.3 Polynomial splines

Within this context, planar polynomial splines are curves that are piecewise composed by poly-
nomials of degree n ∈ N with values in R2.
Let s : [0, 1] → R2 be a polynomial spline that is differentiable at every point. If the best
approximating point of an arbitrary point x ∈ R2 regarding s is not located on the starting
point or on the endpoint of s, then the parameter t0 of the best approximating point satisfies
〈ṡ(t0)|x− s(t0)〉 = 0. In general, solving this equation implies finding the roots of a polynomial
of degree 2n− 1. For n = 2, there exist some closed solving formulas for this problem, which are
possibly numerically critical. For n > 2, the above mentioned equation is generally not solvable
in a closed form at all (cf. [Bosch 06]). Instead, some iterative approximation methods can be
applied, like bisection or Newton’s method. These approaches are computationally much more
expensive than the closed solutions available for line segments or circular arcs.
Basically, polynomial splines of degree n enable n− 1-times differentiability, which makes them
suitable for modeling the curvature as far as n ≥ 3 is chosen. For n = 3, the second derivative
is piecewise affine.
Polynomial splines are generally not invariant with respect to offset curves (cf. [Farin 02]).
Regarding the data volume, for any polynomial spline represented with respect to the compact
B-Spline basis its breakpoints and the guiding polygon need to be stored. Alternatively, the
curve can be reconstructed considering the breakpoints and the n-th derivatives of the spline at
the breakpoints. For Bézier curves, the defining guiding points need to be stored.
Road modeling approaches using polynomial splines are found for instance in [Chen 10, Koutaki 06].
There are several methods for the interpolation or approximation with polynomial splines (cf.
[De Boor 01, Nürnberger 89]). In this situation, the choice of the breakpoints (or the choice of
the B-Spline knot sequence) is crucial for both the accuracy and the total number of segments
of the spline. However, the approximation with polynomial splines respecting a given error tol-
erance and minimizing the number of segments has remained an unsolved problem so far. Since
the accuracy and the computational processing effort, which is also affected by the segment num-
ber, impact the performance of any map-based application, the commonly known approximation
techniques are rethought in favor of a novel approximation scheme based on circular arc splines.

5.2.4 Arc splines

The basic definitions and properties of arc splines have been introduced in Section 2.1.1 and
2.1.2, respectively. The particularly efficient calculation of point to curve distances and best
approximating points for arc splines has been shown in Section 2.1.3.
The curvature of an arc spline is a step function. In other words, it is piecewise constant.
Since continuity of curvature is of importance for applications like the autonomous driving, some
methods that generate this continuity based on arc splines are proposed in Section 5.3.4.4.
As mentioned in Section 2.1.2, offset curves of arc splines are arc splines again and they can be
determined directly using the equations in (2.1.18).
For any given point sequence and a chosen tolerance, the Smooth Minimum Arc Path-algorithm
from [Maier 10] generates a smooth arc spline that minimizes the segment number while not
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exceeding a given tolerance. Thus, applying the method described in Section 5.4, the accuracy
of the resulting map can be controlled for generating continuous map elements. Moreover, the
minimality of segments ensures that the computational effort for processing map data as well as
storing the map is minimized regarding any other arc spline approximation technique.

p1

p2

p3

p4

p5p6

p7

τs1(p2) = τs2(p2)

s1
s2

s3

s4
s5

s6

τs1(p1)

τs5(p5)α

Figure 5.2.3: Smooth arc spline γ with six segments. All segments si except for s5 are circular arcs. The
angle α determines the orientation of τs1(p1). The equality of the tangent unit vectors
τsi(pi) and τsi+1

(pi) indicates the smoothness at pi.

Using the tangential continuity, a smooth arc spline γ = s1 . . . sn can be stored efficiently, as
depicted in Figure 5.2.3 and detailed in [Schindler 12]: Based on the starting point p1 = S(s1)

and the first breakpoint p2 = E(s1) together with the angle of the starting tangential direction
τs1(S(s1)), the first segment s1 is already uniquely determined. Due to the tangential smoothness
of γ, one has τs1(E(s1)) = τs2(S(s2)), which in turn enables the reconstruction of the second
segment s2 by also considering S(s2) and E(s2). Iteratively, the whole arc spline γ is encoded
uniquely by n + 1 points (starting point, breakpoints and endpoint) as well as the angle of the
starting tangent, which requires 2n+3 floating point numbers in total. In comparison, a polygon
defined by the chords of the segments would require 2n + 2 floating point numbers. Therefore,
the following should be noted:

• Due to the increased flexibility of arc splines, a significant reduction of the segment number
is generally to be expected when approximating with arc splines in comparison to polygons,
given a desired tolerance.

• Justified by the comparatively lower number of segments and the distance calculation in
closed form, the computation of best approximating points is in general more efficient
compared to polygons.

• Beside the more realistic modeling of road elements, arc splines directly provide curvature
information.

In this sense, modeling with smooth arc splines outperforms modeling with polygons with respect
to the information content, the data volume and the efficiency of processing.

Furthermore, arc splines comply with the standards of the Geography Markup Language (GML)
[GML 12] developed by the Open Geospatial Consortium (OGC) for modeling geometry within
Geographic Information Systems (GIS) [Heywood 06, Maguire 97]. Thus, using arc splines as a
curve model ensures compatibility with standard GIS tools and map databases.
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5.2.5 Selection of arc splines

Under consideration of the requirements analysis in Section 5.1, a final evaluation of the different
curve types can be carried out regarding their suitability for modeling in digital maps. Therefore,
the alternative curve types are summarized in table 5.2.1 together with their appropriateness
regarding the set of criteria.

Distance
calculation

Offset
generation

Data volume
curvature

information

Polygon + + - - - -
Clothoid - - - - ++ ++
Pol. spline - - - + +
Arc Spline ++ ++ + +

Table 5.2.1: Summary of the evaluation of different curve types regarding the set of criteria. ++ means:
“very suitable”, +: “suitable”, -: “unsuitable”, - -: “very unsuitable”.

Due to the advantageous properties of arc splines, this curve type is chosen for modeling contin-
uous structures of the digital map in this work.
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5.3 Modeling

After the requirements analysis and the justification for the choice of arc splines as curve model,
this section deals with the modeling of the digital map. All of the modeled elements consist of a
geometric representation and some additional semantic information realized in a list of attributes.

5.3.1 Separation of the elevation

First, all geometric structures are defined two-dimensional in the X,Y -plane of the navigation
frame (cf. Section 3.1.2). This modeling already satisfies the requirements of many applications.
Additionally, each lane representation is connected to an elevation profile, which is described in
more detail in Section 5.3.4.1.

5.3.2 Landmarks

Definition 5.3.2.1 (Landmark)
Any landmark l = (pl, Al) consists of a pair of coordinates pl ∈ R2 defining its position and a
list of optional attributes that describe the geometry and the type of l in more detail.

Table 5.3.2 gives an overview of the considered attributes in Al. In Figure 5.3.4, a map section
is illustrated including some classified landmarks.

In principle, arrow markings on the road surface are representable by the geometry of their
contour. However, since their appearance is standardized by [BFV 93], it is sufficient to describe
an arrow marking by its position, its orientation and its type as a landmark.

The set of all landmarks is denoted by L.

Attribute Range Description

Diameter R+ Diameter regarding the X,Y -plane
Height R+ Height of the landmark in Z-direction
Orientation [0, 2π[ type specific orientation of the land-

mark; Clockwise angle to the Y -axis
Type {tree, reflection_post, stop,

give_way, traffic_light,
speed_limit_s (s ∈ N),
arrow_marking_left,
arrow_marking_right,
arrow_marking_forward,
arrow_marking_left_right,
arrow_marking_left_forward,
arrow_marking_right_forward,
arrow_marking_left_right_forward}

Type of the landmark

Table 5.3.2: Attributes of a landmark
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80

Figure 5.3.4: Landmarks including semantic classification. Aerial image by courtesy of Bayerische
Vermessungsverwaltung
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Continuous road marking
Lane
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Figure 5.3.5: Map section including lanes, road markings and landmarks.

5.3.3 Road markings

Definition 5.3.3.1 (Road markings)
Any road marking (γ,A) is composed by a smooth arc spline γ ∈ S∞ and an optional list of
attributes A.
Arc splines are used for modeling both continuous road markings and individual line segments of
dashed road markings (cf. Figure 5.3.5). Note that, according to definition 2.1.1.4, line segments
are smooth arc splines, as well.
Possible attributes of A are summarized in table 5.3.3. The attribute Width refers to the average
width of the road marking in the direction of the normal vectors of γ. The road marking type
marking models a marking in longitudinal direction of a lane, while stop_line represents a stop
line, for instance, at an intersection or a junction. In addition, the (virtual) line of sight type
line_of_sight is considered at where a vehicle needs to stop in case that no other traffic rule
applies.
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The set of all road markings is denoted by M.

Attribute Range Description
Width R+ Average width of the marking
Type {marking, stop_line, line_of_sight} Type of the marking
Color {white, yellow} Color of the marking

Table 5.3.3: Attributes of a road marking

5.3.4 Lanes

The model of a lane describes the course of the middle of a real lane.

Definition 5.3.4.1 (Lanes)
A lane (γ, ν, A) consists of two smooth arc splines γ, ν ∈ S∞ and an optional list of attributes A.
The spline γ represents the course of the lane in the X,Y -plane of the navigation frame, where
the order (2.1.1) of γ determines the drivable direction1. Additionally, the arc spline ν describes
the elevation profile of the lane which is depicted in more details in the following sections.
The set of all lanes is denoted by R.

5.3.4.1 Elevation profile and 3D-curve

According to the definitions in Section 2.1.1.1, let lγ := len(γ) be the length of γ and let lν :=

len(ν) be the length of ν, respectively. The corresponding elevation profile that provides an
elevation value for each arc length parameter of the planar lane course γ is a function h :

[0, lγ ]→ R, for which {
(t, h(t)) ∈ R2

∣∣ t ∈ [0, lγ ]
}

= tr(ν) (5.3.4)

holds. In general, for an arbitrary arc spline ν ∈ S∞, h is only a relation. Since the inclination
on real roads is significantly lower than 90◦ with respect to the local tangential plane on earth,
it can be assumed that h is well-defined.
In the following, the properties of the chosen modeling are investigated. That way, the differen-
tiability of h can be shown, which characterizes the realism of the proposed curve model: Let
g : [0, lγ ] → R2 be an arc length parametrization of γ and let n : [0, lν ] → R2 be an arc length

parametrization of ν = ν1 . . . νk with breakpoints bi :=

(
ti

h(ti)

)
for i ∈ {1, . . . , k−1} with t0 := 0

and tk := lγ .
Let t ∈ [0, lγ ] be arbitrarily chosen.

1. Case: t ∈]ti−1, ti[ for i ∈ {1, . . . , k}
Let r > 0, C ∈ R2 be the radius and the center of νi. Then the following is true for

F : R2 → R, (a, b) 7→ (C1 − a)2 + (C2 − b)2 − r2 : (5.3.5)

1The case of different allowed drivable directions can be modeled by introducing specific attributes in A.
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F (t, h(t)) = 0 and D2F (t, h(t)) = −2(C2 − h(t)) 6= 0, (5.3.6)

according to the assumptions. Otherwise the tangential direction would be parallel to the Y -axis
at (t, h(t)).

The implicit function theorem (cf. [Forster 11]) guarantees the existence of some neighborhoods
I, J ⊂ R of t and h(t) as well as a uniquely defined continuously differentiable function ϕ : I → J

with ϕ(t) = h(t). After a possible shrinking of I, the equality ϕ|I = h|I results from the
uniqueness and thus h is continuously differentiable in t.

2. Case: t = ti for a i ∈ {1, . . . , k − 1}
Likewise, we have D2Fi(t, h(t)) 6= 0 and D2Fi+1(t, h(t)) 6= 0 for the segments νi and νi+1,
respectively.

The implicit function theorem guarantees the existence of some neighborhoods I1, I2 ∈ R of t
and some neighborhoods J1, J2 ∈ R of h(t) as well as two continuously differentiable functions

ϕ1 : I1 → J1 with ϕ1(t) = h(t) and (5.3.7)

ϕ2 : I2 → J2 with ϕ2(t) = h(t). (5.3.8)

Hence, h is differentiable from the left and from the right. Furthermore, the implicit function
theorem assures that

ϕ̇i(a) = −D1Fi(a, ϕi(a))

D2Fi(a, ϕi(a))
for i ∈ {1, 2}. (5.3.9)

Since ν is smooth, the tangential unit vectors of νi and νi+1 equal at the breakpoint bi and
ϕ̇1(t) = ϕ̇2(t) = ḣ(t) holds. Hence, h is differentiable.

The function

f : [0, lγ ]→ R3, t 7→

(
g(t)

h(t)

)
(5.3.10)

is thus a regular parametrization of the 3D-curve of the lane because its components are smooth
and ġ(t) 6= 0 for all t ∈ [0, lγ ] and hence ḟ(t) 6= 0.

That way, the course of elevation ν is modeled separately from γ, which is in accordance to the
German guidelines for the road construction [BFV 93]. In particular, |γ| = |ν| does not hold
imperatively. Figure 5.3.6 shows an example of the planar course of a lane. The corresponding
elevation profile is depicted in Figure 5.3.7. Finally, Figure 5.3.8 shows the resulting 3D-curve,
which combines the planar course and the elevation profile.

Calculating the length of a lane section According to the preceding proof, the function
ñ : [0, lγ ]→ R2 with the components ñ1(t) = t and ñ2(t) = h(t) is a parametrization of ν.

Using the proposed modeling, the length of the elevation profile ν equals the length of the
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Figure 5.3.6: Planar course of a lane in the X,Y -plane of the navigation frame (arc spline γ).
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Figure 5.3.8: Resulting 3D-curve η of the lane. Some perpendicular lines on the planar course γ are
shown as well.

3D-curve η, since γ is arc length parametrized, and it is true that:

len(ν) =

lγ∫
0

∥∥ ˙̃n(t)
∥∥ dt

=

lγ∫
0

√
( ˙̃n1(t))2 + ( ˙̃n2(t))2dt

=

lγ∫
0

√
1 + (ḣ(t))2dt (5.3.11)

=

lγ∫
0

√
‖ġ(t)‖2 + (ḣ(t))2dt

= len(η)

This property is advantageous for applications that need the distance between two points p1

and p2 on the lane regarding the 3D-curve representation2: Instead of calculating the arc length
difference between p1 and p2 regarding the 3D-curve, it is sufficient to simply focus on the arc
length difference regarding the elevation profile ν:

2This kind of information is relevant to intersection assistance systems, where the distance between a vehicle
on a lane and a stop line lying ahead at an intersection must be calculated.
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Let p1, p2 ∈ tr(f) and t1, t2 ∈ [0, lγ ] with f(t1) = p1 and f(t2) = p2. Then the distance between
p1 and p2 regarding the 3D-curve is given by

df (p1, p2) :=

t2∫
t1

∥∥∥ḟ(t)
∥∥∥ dt =

t2∫
t1

∥∥ ˙̃n(t)
∥∥ dt.

According to Section 2.1.1.4, the length of an arc spline sums up from the lengths of its segments
that in turn can be calculated in a closed form.
From an implementation’s side of view, the calculation of df (p1, p2) can be further simplified if
the individual segment lengths are stored in an accumulated form in the data structure for an
arc spline. The desired distance then results from the distance of the arc length parameter t1
and t2, which can be determined efficiently using the methods described in Section 2.1.3.
To summarize, using the modeling proposed above, point distances can be calculated very effi-
ciently regarding both the planar representation and the 3D-curve of a lane.

5.3.4.2 Attributes of a lane

Table 5.3.4 gives an overview of the possible attributes that are considered additionally for lanes.
Beside the continuous course of the lane width (cf. Section 5.3.4.3), a static value of the average
lane width is available, which already satisfies the requirements of many applications.

Attribute Range Description
Width R+ Static value of the average lane width
Type {high_way, motor_way, primary,

residential, cycleway}
Lane type

Table 5.3.4: Attributes of a lane.

5.3.4.3 Additional profiles

Analogous to the modeling of the elevation profile, the integration of additional profiles is possible.
For assistance functions relying on exact information on the lane width, a continuous representa-
tion of the course of the lane width is preferable compared to some static information. According
to the guidelines on road constructions [BFV 93], the lane width can be extended locally in turns,
in order to facilitate the transit of long vehicles like trucks. Analogous to the elevation profile,
the access to the local lane width is realized by the arc length parameter of the planar lane
representation.
Furthermore, the cross-slope of a road can be modeled using an additional profile in the same
way.

5.3.4.4 Extended curvature information

As discussed in Section 5.1.1.2, precise reconstruction of the original curvature is essential. In
particular, the linear curvature characteristics of the clothoid parts should be approximated
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in a preferably exact manner. However, the curvature of an arc spline is a step function
and therefore not continuous. Though there are approaches for G2-smoothing of arc splines
[Li 05], the following method results in a continuous and piecewise affine curvature character-
istic: Let γ be a smooth arc spline with arc length parametrization g : [0, l] → R2 and let
t0 := 0 < t1 < · · · < tm := l denote the arc length parameters of the corresponding breakpoints
with respect to g. Hence the corresponding curvature function of γ is

κ : [0, l]→ R, κ =
m∑
j=1

κj χ
[tj−1,tj [

, (5.3.12)

where χ[x,y[ is the characteristic function of the interval [x, y[ and κj are the curvature values of
the particular segments. We then define an approximation κ̃ : [0, l]→ R by

κ̃(t) :=
1

b(t)− a(t)

∫ b(t)

a(t)
κ(s)ds, (5.3.13)

with a(t) := max(0, t−∆t) and b(t) := min(l, t+ ∆t) (5.3.14)

where ∆t > 0 is a parameter controlling how strong the influence of the curvature values of the
adjacent segments are. Using the mean value theorem, it is easy to show the continuity of κ̃
and the piecewise affinity follows from the integration of a step function. For arc splines, κ̃ is a
sum which can be calculated very efficiently. More details and results on this extension are to
be found in [Schindler 12].

5.3.5 Digital map / map section

Finally, based on the preceding model descriptions, the term digital map or map section can be
defined:

Definition 5.3.5.1 (Digital map / map section)
Any triple (L,M,R) of landmarks L ⊂ L, road markings M ⊂ M and lanes R ⊂ R is called
digital map or map section, respectively.



60 Chapter 5. Digital Map

5.4 Map generation

This section is dedicated to methods for the generation of digital map elements in terms of the
modeling proposed in part 5.3. Figure 5.4.9 gives an overview of the data processing chain for
generating map elements.

Data  Acquisition

Measurement Points Continuous 
Structures

Preprocessing

Curve Fit

Classification

Map Items

Landmarks

DBM
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P 
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N manual acquisition, aerial image, vehicular acquisition, ...

Filtering

Figure 5.4.9: Processing chain for the map generation.

The basic data set for the determination of map elements consists of measurement points provided
by the data acquisition step:

• For landmarks, these measurement points correspond to their position.

• In order to reconstruct road markings, measurement points on the corresponding line mark-
ings are necessary.

• The determination of a lane representation requires measurement points along the middle
of a lane. The elevation profile can be created as long as some elevation data is available
for each measurement point.

Before scoping the geometric computation of map elements, the data sources for the required
measurement points should be clarified:

5.4.1 Data sources for the map generation

5.4.1.1 Use of existing map data

If some highly precise map data is available (e.g. from land surveying offices) then this informa-
tion can be used for a change of curve representation. Therefore, the existing curve is sampled
in order to extract some raw measurement points. One example is sampling a curve based on
the construction plans of a road.
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5.4.1.2 Aerial images

Furthermore, the evaluation of aerial images can be used for extracting raw measurement points.
In [Pink 11] or [Kümmerle 09], some image processing techniques are proposed in order to auto-
matically extract measurement points on road markings based on high-definition aerial images.
That way, large map sections can be processed efficiently. This kind of method requires some
ortho-rectified images of high-definition that are exactly georeferenced. Dealing with this high-
quality aerial images involves some potential sources of errors. In particular, physically caused
projection errors mostly occur in hilly areas. Furthermore, it should be noted that, even for
highly precise aerial images with a resolution of 10 cm / pixel, one pixel corresponds to the mag-
nitude of the desired map accuracy. Finally, measurement points on road markings can only be
extracted if they are actually visible on the aerial images, which might not be true in case of
occluding objects like trees, buildings, vehicles or shadows.

5.4.1.3 Manual acquisition

Using highly precise geodetic surveying systems (like the one specified in Appendix A.6), sin-
gle measurements can be made with centimeter accuracy under appropriate conditions. This
procedure allows high precision of measurements, but it is time consuming and thus expensive.
However, the method is suitable for the generation of reference data for evaluation purposes. In
Ko-PER, this has been done to confirm the accuracy of the digital map created with the methods
presented in this work.

5.4.1.4 Vehicular acquisition

An alternative for the generation of measurement points is given by the vehicular data acquisition
on roads using onboard perception systems. In that case, the vehicle needs to be equipped with
a localization unit as well as a sensor system that allows the extraction of the desired raw
measurement points. This approach has been chosen for this thesis and it is elucidated in the
following sections.

5.4.2 Preprocessing of measurement points

Measurement points for generating landmarks can be created by the laser scanner processing
described in Section 4.4. Since this extraction results in a set of landmark candidates with
regard to the vehicle frame, they need to be transformed into the navigation frame in order to
store their position in the digital map.
The transformation of measurement points from the vehicle frame to the navigation frame is
done using the position and the yaw angle of the vehicle determined by the RTK GPS unit.
Again, let ψ ∈ R be the vehicle yaw angle and let x ∈ R3 its position in the navigation frame.
Then, any measurement point p ∈ R3 is transformed from the vehicle frame into the navigation
frame by rotation and translation:

T : R3 → R3, p 7→M
(π

2
− ψ

)
· p + x (5.4.15)
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where, for any α ∈ R, M is the rotation matrix

M(α) :=

 cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

 .

For the transformation of measurement points extracted by the sensor data processing at a
certain point in time tk, the transformation parameter x and ψ from (5.4.15) are required for tk
as well. However, the RTK-GPS unit might not provide this information at that specific time
in general. In that case, the vehicle’s position and yaw angle are predicted using the RTK-GPS
measurements preceding tk and the vehicle motion model described in Section 3.2.1.
Concerning the measurement points for road markings and lanes, the video-based lane recognition
presented in Section 4.2 can be used for the data acquisition. The algorithms described there
result in a finite set of real measurements YLR ⊂ B in the image rectangle B ⊂ R2 within the
image plane. Using the camera reprojection K? from (4.2.5), the real measurement points in
YFS are reprojected onto the road surface. This is realized by intersecting for each point b ∈ YLR
the view ray R(b) defined by (4.2.6) with the Z = 0 plane of the vehicle frame3. This step yields
the finite set

PLR :=
⋃

b∈YLR

(R(b) ∩ {Z = 0}) ⊂ R3 (5.4.16)

of reconstructed road marking measurement points based on the lane recognition. Like the
landmark candidates, the road marking measurement points are transformed into the navigation
frame using transformation (5.4.15).
In order to create a data basis of measurement points for a whole road section, the cartographic
vehicle passes all relevant lanes capturing the environment with the onboard sensor system. For
each sensor acquisition frame at time tk, the current measurement points PLR,k are reconstructed
in the navigation frame using Tk from (5.4.15) with the transformation parameter for time tk,
yielding to a finite set

PRM :=
⋃
k∈N

(Tk(PLR,k)) ⊂ R3 (5.4.17)

of reconstructed road marking measurement points in the navigation frame. Likewise, the recon-
structed landmark measurement points are denoted by

PLM ⊂ R3. (5.4.18)

Due to physical measuring inaccuracies of the used sensors, the reconstructed measurement
points may be inconsistent regarding their positions. In order to cope with this problem, post-
processing techniques are available in the field of robotics. Simultaneous Localization and Map-
ping (SLAM) approaches can be used to model this task as a global optimization problem (cf.
[Rauch 13, Nüchter 10]). Furthermore, standard filtering techniques based on RANSAC methods
(cf. [Fischler 81]) are suitable to remove outliers within the input point sequences.

3In reasonable practical configurations, these intersections always exist and they are located next to the sampled
points of the local road model described in Section 4.2.3.2.
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5.4.3 Generation of map elements

Once the reconstructed landmark measurement points PLM are available, they are used for
generating landmarks for the digital map according to the specification in Section 5.3.2. Details
on clustering and filtering techniques concerning the landmark generation are not treated further
at that point but they are found in [Weiss 11, Heenan 05, Weiss 07, Fuerstenberg 05].
Instead, this section focuses on the generation of continuous map elements, like road markings
and lanes, based on the reconstructed measurement points of road markings PRM defined in
(5.4.17). According to the map modeling presented in Section 5.3, continuous map elements
are essentially represented by smooth arc splines. Therefore, the following part deals with the
computation of smooth arc splines based on the reconstructed and filtered point data set PRM .
To summarize, the following steps are performed:

1. Segmentation During the data acquisition process, measurement points for different road
marking segments may have been collected. Since each segment is represented by an
individual arc spline, the input data needs to be segmented into connected components. In
particular, this is necessary for dashed road markings.

2. Arc spline fit After the segmentation, each component of the input points is approximated
by a smooth arc spline.

3. Elevation profile As long as there is some information on the elevation of a component,
the corresponding elevation profile can be computed.

4. Storage Finally, the map elements are stored in the map data base to provide persistent
access to the digital map.

Since the elevation profile is separated (cf. Sections 5.3.1 and 5.3.4.1) from the planar curve
representation in the X,Y -plane of the navigation frame, we focus on the planar projection of
the input points at first. Therefore, let

P :=

{(
π1(p)

π2(p)

)
∈ R2

∣∣∣∣∣ p ∈ PRM
}

(5.4.19)

denote the finite set of projected input points for the subsequent steps.

5.4.3.1 Segmentation

The aim of the segmentation is the separation of P into components such that, ideally, each
component corresponds exactly to one real road marking component. Therefore, a graph-based
approach can be applied:
Let G = (V,E) be a Euclidean graph where the coordinates of the nodes v ∈ V are identified with
the points in P . With d denoting the Euclidean distance, the set of edges E in G is defined as
{(u, v) ∈ V × V |0 < d(u, v) ≤ δ}. The distance δ is determined by the density of the measuring
points and it is smaller than the minimum distance between two adjacent road marking segments.
Let C be the set of connected components of G. The set of corresponding points of a connected
component C ∈ C is denoted by PC .
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5.4.3.2 Arc spline fit

In the next step, the input points PC of each connected component C ∈ C are approximated
by a smooth arc spline. The individual segments of dashed road markings are represented as
line segments, which are indeed smooth arc splines with only one segment. Depending on the
dimensions4 of C, a simple line segment is fit or the more general approximation with smooth
arc splines is applied to PC .

Line segment case The best approximating line l := {a+ λ · b | λ ∈ R} for some a, b ∈ R2,
is used which minimizes

∑
p∈PC dist (l, p)2, where dist (l, p) := min

x∈l
d(x, p) with the Euclidean

distance d. This approximation problem is solved using standard least-squares methods. The
corresponding line segment is the smallest connected subset of l including all projections of PC .
If the lengths of the segments are known a priori, the segments can be used as an initial solution
for an optimization process with respect to the pose of the line segment. However, this postpro-
cessing should be handled carefully, as the painted road markings in reality often differ from the
construction plan.

General arc spline case It is desirable to compute a curve that approximates not only the
extracted points up to unavoidable fitting errors but also describes them effectively, i.e. with
minimal complexity. Such a characterization allows coping with requirements and applications
motivated in Section 5.1.
In the general case, the arc spline approximation technique developed in [Maier 10] is applied
to PC . Since the methodology of that work is used extensively to generate map elements in the
present case and thus plays a decisive role, it is summarized in the following.
A so called tolerance channel describes the feasible area for the resulting smooth arc spline. The
method controls the approximation error by a geometric model: Only solutions staying inside the
tolerance channel around PC are taken into account. The width of this channel represents the
user-specified maximum tolerance which can even vary locally. The canonical shape of a tolerance
channel modeling a maximum error ε is given by the set of points which have Euclidean distance
of at most ε to the open polygon running through PC . The resulting boundary curve, which is in
fact an arc spline, is approximated by a simple closed polygon. This way, a geometric constraint is
obtained, which can be adjusted in a comfortable and intuitive manner. In addition, two disjoint
edges of the tolerance polygon, s and d, are fixed and act as start and destination segment of
the channel (see Figure 5.4.12). Details on the generation of tolerance channels are found in
[Schindler 11, Maier 10, Drysdale 08] or in [Heimlich 08, Held 05], where both symmetric and
asymmetric tolerance zones are introduced which are generated using Voronoi diagrams.
Any smooth arc spline staying inside the tolerance channel and connecting s and d with a
minimum number of segments solves the problem. Such a curve is called Smooth Minimum Arc
Path (SMAP). Note that the breakpoints are not required to be part of PC but they have to
be determined automatically. This has considerably positive effects on the resulting number of

4Relevant decision criteria are the maximal distance between any two points in PC and the statistical spread
of PC .
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segments. In contrast, all other currently-known methods using arc splines have no theoretical
bounds concerning the number of segments.

Definition 5.4.3.1
Any triple (P, s, d) is called tolerance channel if P is a simple closed polygon and s and d are
two disjoint edges of P denoting the start and the destination.

Since P is a closed curve, it is reasonable to consider the interior of P . According to the Jordan
curve theorem (cf. [Dieudonné 60]), P divides R2 \ tr(P ) into two connected components. One
of them is bounded and defines the interior P̊ of P . The closure of the interior is denoted by
P̄ := tr(P )∪ P̊ . Furthermore, it can be distinguished between the left channel side and the right
channel side by imaging to ’stand’ on tr(s) and looking into the interior P̊ of P .
In the following, let (P, s, d) be a tolerance channel. To keep the notation as simple as possible,
it is assumed that the two vertices of s are convex: A vertex v is convex if the interior angle at
v is strictly smaller than 180◦. The definitions for the general case as well as the proofs of all
subsequent theorems can be found in [Maier 10].

Definition 5.4.3.2
A point a ∈ P̄ is said to be circularly visible (from s with respect to P̄ ) if there exists a segment
γ in P̄ that has its starting point on s and ends in a. The set of all circularly visible points from
s with respect to P̄ is denoted by V . An oriented arc γ, as above, is called visibility arc.

The main instrument of the SMAP algorithm is the calculus of alternating restrictions. These
are points visibility arcs and tr(P ) have in common, as indicated in Figure 5.4.10. In the left
image, the plotted visibility arc is touched by P from the left and from the right at the points
a1, . . . , a6. Thus, they are called left and right restriction points.
At a right restriction point, the visibility arc cannot be moved to the right without either ex-
ceeding the tolerance boundary or violating the starting condition.
The alternating number of a sequence of restriction points, ordered with respect to the order
(2.1.1) of the visibility arc, is given by the number of changes of channel sides between the
consecutive restriction points increased by one: For two side changes, at least three restriction
points are required on alternating channel sides resulting in an alternating number of three.
Thus, the alternating number is not defined directly by the number of restriction points but it
is determined by the number of side changes, as depicted in Figure 5.4.10.
Let ∂V be the boundary of V . In [Maier 10], it is shown that the boundary points in ∂V \ tr(P )

lie on arcs, and the corresponding visibility arcs are called blocking arcs if they are maximally
extended with respect to inclusion in P̄ . These arcs distinguish themselves from the other
visibility arcs as they have at least three alternating restriction points a1, a2, a3 ordered as a1,
a2 and a3 according to the order (2.1.1) of the arc. They satisfy the following condition: Either
a1 and a3 are left restriction points and a2 is a right restriction point or a1 and a3 are right
restriction points and a2 is a left restriction point. An example of alternating restrictions can be
found in Figure 5.4.11. Arcs passing through three alternating restriction points can be described
in an efficient manner regarding an algorithmic approach as they uniquely determine the three
degrees of freedom an arc has.
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Figure 5.4.10: Tolerance channels and visibility arcs with respect to s.
Left: a1, a2, a3, a5 and a6 are left restriction points; a4 is a right restriction point. The
alternating number is three.
Right: Visibility arc with an infinite number of right restriction points A and one left
restriction point al. The alternating number is two.

Every connected component of P̄ \ V is separated from V by exactly one blocking arc. The
blocking arc corresponding to the connected component including d is called the window (with
respect to s), for which one can show the following characterization:

Remark 5.4.3.1 (Window characterization)
Let γ be a maximally extended visibility arc with endpoint on the left side of P . Then γ is the
window if and only if there are three alternating restriction points a1, a2, a3 where a3 is a right
restriction point. Similar conditions hold if γ has its endpoint on the right side of P .

All possible configurations of left and right restrictions are given as follows: The corresponding
arc

• passes through three vertices

• passes through two vertices and touches an edge of P or

• passes through one vertex and touches two edges of P

Having analyzed the circular visibility set V , the next step is to characterize the sets V i of all
points which can be reached by i = 2, . . . , k segments till V k intersects d. Therefore, the following
gives a criterion for deciding if an oriented arc can be smoothly continued or not.
Oriented arcs in P satisfying the so called continuation condition (CC) can be smoothly joined
to a visibility arc. An oriented arc γ satisfies the CC with respect to an oriented arc η if either
γ smoothly joins η or there are two intersection points x1, x2 of γ and η s.t. the order induced
by γ and the one induced by η are equal. An illustration can be found in Figure 5.4.12. The CC
can be summarized as follows:

Remark 5.4.3.2 (Continuation condition)
Let x ∈ P̄ \V and let C be the connected component of P̄ \V containing x. Then, x ∈ V 2 if and
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Figure 5.4.11: Visibility set with respect to the start segment s. The shaded area is not circularly
visible and γ1, γ2 and γ3 are blocking arcs. Restriction points are marked with dots.
The window w is highlighted and dashed with its alternating restriction points a1, a2, a3.
In contrast to the blocking arcs γ1, γ2, γ3, the end point of the window w lies on the
opposite channel side of the last restriction point a3.

only if there exists an oriented arc γ in V ∪C ending in x and satisfying the CC with respect to
the corresponding blocking arc.

In this case, even an arc γ that is extremal can be chosen, i.e. having at least two alternating
restrictions, which is fundamental for a constructive approach and hence for the algorithmic
design.

Therefore, a characterization of the set V 2 can be formulated by examining all oriented arcs γ
satisfying the conditions above. However, not the whole set V 2 needs to be considered but only
the component leading to d. This meets in elucidating a “modified” tolerance channel with the
corresponding window as starting segment. The only differences to the kind of tolerance channels
considered so far are the more complicated starting requirements given by Theorem 5.4.3.2.
In [Maier 10], it is shown that the theorems presented above hold for this kind of tolerance
channel as well. Especially, the window of V 2 is characterized in the same manner.

It should be recalled that touching the start segment, which is here the window of V , is a left
or right restriction point. In fact, this channel can be interpreted as a shrinked subset of the
original one, where the starting segment is given by the window instead of s.

Theorem 5.4.3.2 can now be used inductively, exploiting the properties of the sets V k this way. In
the following, it is assumed that the successively resulting windows have exactly three alternating
restrictions. The general case requires some slight modifications, which cannot be treated within
this scope. The outcome of this is a two step greedy algorithm traversing P from s to d in the
forward step and back again from d to s in the backward step.



68 Chapter 5. Digital Map

s

a1

a2

a3

d

x1

x2

x1

x2

Figure 5.4.12: Visualization of the forward step of the SMAP algorithm. In the bottom left zoom,
three alternating restriction points a1, a2, a3 are marked with dots.

The Forward Step: After having found the first window ω1 by identifying arcs with three
alternating restrictions, the next windows ωi can be computed such that the conditions of Theo-
rem 5.4.3.2 and Theorem 5.4.3.1 are satisfied. In particular, ωi has to satisfy the CC with respect
to ωi−1. The procedure is stopped when a point of d is circularly visible, and a visibility arc
satisfying Theorem 5.4.3.2 and ending in d is computed. As it can be seen in Figure 5.4.12, the
windows do not represent a smooth arc spline. However, the computed windows are used in the
backward step to generate a SMAP.

The Backward Step: The lastly calculated arc ωk represents the last segment of the resulting
SMAP. In particular, the minimum segment number is k. The predecessor segments are then
determined by touching their successor and by two alternating restrictions. The whole procedure
is finished when s has been reached. In Figure 5.4.13, the backward step is visualized and the
box shows a single backward step: γi joins its successor γi+1 and satisfies the CC with respect
to ωi−1, as the two emphasized dots indicate.

Figure 5.4.14 shows the reconstruction result of a real lane section.
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Figure 5.4.13: Visualization of the backward step of the SMAP algorithm. The overview shows the
SMAP result. Simple dots indicate breakpoints of the spline. The zoom shows a single
backward step, where γi smoothly joins its successor γi+1 at the breakpoint bi and
satisfies the CC with respect to ωi−1 by intersecting at x1 and x2.

Incorporation of line segments Considering digital maps, it has to be expected that straight
road sections appear on real roads, in particular in the case of highways. Due to numerical
reasons, the standard version of the SMAP algorithm produces circular arc segments with large
radii in this case. However, it is preferable that these straight sections are represented by line
segments instead. This is not only motivated by the more realistic modeling. Also, numerical
pitfalls can be evaded for further calculations on the digital map. For that reason, an extension
of the SMAP algorithm is proposed in [Maier 13], respecting predefined line segments while the
minimality of the segment number can still be guaranteed.

Computational complexity Though generating a SMAP guarantees a smooth arc spline with
the least possible number of segments with respect to any given accuracy, the approximation
algorithm does not satisfy real time requirements. The best known implementation of this
algorithmic approach has a quadratic worst case complexity regarding the number of input
points. However, the computational time does not play an important role here since the digital
map can be generated offline.
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Figure 5.4.14: Illustration of the arc spline approximation for a lane section: Input data points, ε-
tolerance channel and resulting smooth minimum arc path (SMAP).

Restriction of the start and end condition According to the theory in [Maier 10], the start
and end segment of a tolerance channel can degenerate to points. This restriction allows modeling
mandatory starting and end conditions of the resulting arc spline. In particular, this is useful
when individual map elements should be connected at predefined points e.g. at intersections.

5.4.3.3 Elevation profile

Once an arc spline representation γ of a lane with arc length l > 0 is available, the corresponding
elevation profile can be computed. For this purpose, let ti be the run length parameter of the
input data points pi with respect to their projection on γ. The elevation information hi of the
measuring points, which is in fact their Z-coordinate, is used in order to create the input data
(ti, hi) for the elevation profile. Next, the SMAP algorithm is applied to these points resulting
in a smooth arc spline ν representing the elevation profile as defined in (5.3.4.1).

5.4.3.4 Storage

Finally, all computed map elements are stored in a database to provide persistent map access for
the applications. To achieve greatest possible compatibility and interchangeability the approved
OpenStreetMap ([OSM 12]) database and file scheme is used for data storage. Due to this open
format, new elements and attributes can easily be added to the map. For instance, new tags
have been introduced to enable the storage of arc splines in OSM ways.

5.5 Summary

In this chapter, the requirements for the digital map have been gathered from the applications’
side of view. Based on these conditions, the technical requirements have been deduced. After a
discussion of modeling approaches known in the literature, a map model has been chosen that
represents continuous structures as smooth arc splines.
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Finally, methods for the generation of the modeled map elements have been described. The
core algorithm for generating smooth arc splines not only guarantees a predefined approximation
accuracy but it also produces splines with the minimal possible number of segments. This,
indeed, has considerable effects on the quality of the resulting digital map: The global accuracy
of map elements can be controlled while the minimal possible description of the resulting curves
minimizes the required data volume for storing the map as well. Furthermore, the low segment
number of arc splines reduces the computational costs for calculating best-approximating points,
which represents an essential criterion for the map modeling. To sum it up, the proposed models
and methods for the digital map largely meet the requirements and thus are well-suited for a
range of applications, thereunder the vehicle self-localization that is treated in the next chapter.
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Self-localization

‘The first steps are worthless
unless the path be followed to the end.’

(Shankara, 780-820 AD)
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In the preceding chapters, methods for modeling and perceiving the vehicle’s environment were
introduced. The relevant reference frames were defined as well as estimation techniques for the
model parameters of dynamic systems. After the introduction of the digital map model, adequate
methods for the generation of high-precision digital maps allow storing the reference data that
is required for the landmark-based vehicle self-localization approach described in this chapter.

Before scoping on the methods and models used within this thesis, localization approaches known
in the literature are summarized. Determining the pose of a vehicle is one of the key problems
of robotics. Since this thesis accounts for the conditions of real road scenarios, it is focused on
landmark-related vehicle localization approaches for advanced driver assistance systems.
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6.1 Localization approaches in the literature

The so-called Monte Carlo localization (MCL) comprises probabilistic techniques based on par-
ticle filters in order to determine the position of a robot taking into account measurements from
onboard sensors (cf. [Thrun 00]). A standard work on probabilistic methods for robot localization
is [Thrun 05].

Originating from the field of robotic terrain exploration, the Simultaneous Localization and Map-
ping (SLAM) approaches pursue a strategy in which a digital map is built up during a driv-
ing maneuver and, simultaneously, the vehicle’s pose is estimated relatively to this map (cf.
[Wang 11, Nüchter 10, Aycard 10, Durrant-Whyte 06, Thrun 02, Montemerlo 02]). Due to the
immanent mutual dependence of the map building process and the vehicle localization, errors
concerning the resulting localization accuracy are summing up over time. However, if the vehi-
cle passes through a section which is already represented in the map, then some optimization
techniques can be applied to enhance the digital map as well as the localization estimation
[Gutmann 99, Thrun 98].

Landmark-based localization approaches using laser scanners have been investigated in several
works (cf. [Weiss 11, Schubert 09, Weiss 05b, Weiss 05a]). In order to increase traffic safety at
urban intersections, some methods have been developed to provide vehicle positioning in these en-
vironments (e.g. [INTERSAFE-2 11, SAFESPOT 09, Ahlers 09, Rössler 06, Fuerstenberg 05]).
Furthermore, the work in [Wimmer 11] deals with the special conditions on vehicle localiza-
tion within road construction sites. A method for mapping and localizing in the context of
autonomous driving using a 360◦ laser scanner is presented for instance in [Levinson 11].

In the past, some video-based methods for vehicle self-localization have been proposed. The
SLAM approach in [Se 02] uses invariant image features [Lowe 99] for localization purposes based
on image feature matching. The work in [Pink 11, Pink 10] uses stereo image reconstruction in
order to match the extracted visual landmarks on the road surface on a feature level.

The approach in [Mattern 10b, Mattern 09, Mattern 08] uses Hough transformation to detect
line markings. The comparison of expected and real image contents is realized based on texture
interpretation. Within this approach, a texture feature based map is sufficient in contrast to
some explicit geometric modeling of map elements. Video-based localization methods working
directly on aerial images are proposed in [Napier 10, Dogruer 08]. These methods require some
ortho-rectified aerial images of high-definition that are exactly georeferenced. A grid map based
localization approach, which combines sensor data from video and laser scanners, is presented in
[Konrad 12].

In contrast to the positioning methods mentioned above, the following localization approach
makes intensive use of the particular properties of the map model introduced within this thesis.
In particular, the efficient calculability of best approximating points to map elements plays a
decisive role within the observation models and resampling strategies.
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6.2 Overview

The goal of the self-localization is to determine the pose (position and orientation) of the ego-
vehicle within the navigation frame1. The principle of the landmark-based localization is to
associate the detected objects from the vehicle environment perception with elements of the
digital map in order to deduce the vehicle’s pose from the correspondences. Therefore, several
modeling components need to be declared.
Due to physical measuring inaccuracies, the position and shape of perceived objects in the ve-
hicle’s surroundings are potentially erroneous. Furthermore, errors in the association step are
possible, which affects the resulting pose estimation in a negative way. Hence, it is suitable to ap-
ply some probabilistic techniques for the pose estimation, like the ones introduced in Section 2.2.
Within this work, a particle filter model has been chosen as it allows modeling multiple hypothe-
ses (corresponding to multiple modes in the state probability density) as well as incorporating
different observation models of sensor measurements in a flexible way. Modeling measurement
inaccuracies within the observation models allows coping with the problems of erroneous data as-
sociations. In accordance to the recursive scheme of the particle filter described in Section 2.2.2.2,
a dynamic model allows predicting the state of the dynamic system while an observation model
enables incorporating measurements in order to correct the estimated state.
The vehicle model has already been introduced in Section 3.2. Again, the considered state at
time tk consists of the vector

xk =



xk

yk

ψk

vk

ck

βk


=



position x-coordinate
position y-coordinate

yaw angle
absolute value of the velocity
curvature of the circular track

slip angle


∈ R6, (6.2.1)

modeling the position and the orientation of the vehicle together with its dynamic parameters.
The dynamic model of the vehicle, describing its motion in time and space, is summarized in
equation (3.2.8).
In order to apply the filtering techniques introduced in Section 2.2, the observation models for
the measurement update need to be defined. Therefore, the following components remain to be
declared in order to explain the self-localization approach at hand:

• Initialization of the system

• Access to the digital map

• Observation models for the individual sensors: camera, laser scanner, vehicle dynamics and
GPS

• Association of perceived objects in the vehicle’s surroundings with map elements

These aspects are discussed in subsequent sections.
1As mentioned in Section 3.1.1, the resulting pose estimation can be transformed into the world frame using

the transformations described in Section 3.1.2.
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6.3 Initialization

In the initialization phase (cf. step 1 of the particle filtering scheme 1 in Section 2.2.2.2), GPS
is used to define the initial pose parameters of the particles. Therefore, let

(
x

(i)
1|0

)
1≤i≤M

be the

set of M ∈ N+ particles at the initialization time t0. Furthermore, let the geographic longitude
λ0 ∈ [−π, π], the geographic latitude ϕ0 ∈ [−π

2 ,
π
2 ] and the yaw angle ψ0 ∈ [0, 2π] be the mea-

surements of the GPS unit at time t0. Since the pose parameters are modeled in the navigation
frame within the particle filter, the position coordinates (λ0, ϕ0) are expressed in the navigation
frame using the transformation described in Section 3.1.2. Let therefore (l0, b0) ∈ R2 be the
corresponding coordinates of (λ0, ϕ0) with respect to the navigation frame. Let (v0, c0, β0) ∈ R3

be some initial values for the absolute value of the velocity, the curvature of the driven track and
the slip angle.
For the initialization, the particles

(
x

(i)
1|0

)
1≤i≤M

are normally distributed with regard to the

expectation vector (l0, b0, ψ0, v0, c0, β0) ∈ R6 and a covariance matrix M0 ∈ R6×6. M0 is de-
termined by the accuracy of the GPS measurement as well as by the accuracy of the intrinsic
dynamics measurements of the vehicle. All uncertainty values are available from the sensor data.

6.4 Map access

For the association of perceived objects with elements of the digital map, only map sections of a
local environment around the vehicle are of interest. Therefore, a caching strategy is applied in
order to provide an efficient access to map data. Within the set of currently known spatial data
structures, quadtrees represent a suitable model for that purpose [De Berg 08, Samet 90].

Definition 6.4.0.3 (Quadtree)
A quadtree is a rooted tree in which each inner node has exactly four children. Each node v refers
to a rectangle r(v) that covers a subset of R2. If a node v has children vNW , vNE , vSW , vSE , then
their corresponding rectangles are defined by the quadrants of r(v):
Let r(v) := [x0, x1]× [y0, y1] ⊂ R2 with x0, x1, y0, y1 ∈ R, x0 < x1, y0 < y1 and xmid := x0+x1

2

and ymid := y0+y1

2 . The rectangles of the children of v are given by

r(vNW ) := [x0, xmid]× [ymid, y1] (6.4.2)

r(vNE) :=]xmid, x1]× [ymid, y1] (6.4.3)

r(vSW ) := [x0, xmid]× [y0, ymid[ (6.4.4)

r(vSE) :=]xmid, x1]× [y0, ymid[. (6.4.5)

Fig. 6.4.1 shows a quadtree with the corresponding recursive decomposition into quadrants.
Thus, a quadtree models a recursive decomposition of a two-dimensional space. Beside the
rectangle r(v), each node v contains some data corresponding to r(v). For our purposes, each
node v refers to a map section (Lv,Mv, Rv) of landmarks Lv ⊂ L, road markings Mv ⊂M and
lanes Rv ⊂ R (cf. definition (5.3.5.1)) which is defined in the following way: The root of the
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r

NW NE SW SE

NW NE

SW SE

Figure 6.4.1: left: Quadtree of height 4 with root r, inner nodes (circles) and leafs (squares). right:
Corresponding subdivision.

quadtree refers to the entire digital map (L,M,R) ⊂ L×M×R. The map section corresponding
to any node v is given by a subset of (L,M,R) having a non-empty intersection with r(v):

Lv := {(p,A) ∈ L | p ∈ r(v)} (6.4.6)

Mv := {(γ,A) ∈M | tr(γ) ∩ r(v) 6= ∅} (6.4.7)

Rv := {(γ, ν, A) ∈ R | tr(γ) ∩ r(v) 6= ∅} (6.4.8)

According to its hierarchical definition, a quadtree is constructed by recursively decomposing the
covered areas of nodes together with the associated map sections. The decomposition is stopped
at a leaf v when either the number of elements in the map section of v is below a given threshold
or a predefined maximum height of the tree is reached.
In principle, the use of spatial data structures like quadtrees is motivated by the reduction
of storing space. In comparison to a static grid representation, quadtrees allow aggregating
homogeneous data, which corresponds to empty map sections in the present case. Furthermore,
many operations like search queries for points or regions, required for best-approximating point
calculations, can be realized significantly faster compared to a grid representation. However, the
hierarchical structure of quadtrees imposes an overhead for storing data. While point queries in
spatial data can often be realized efficiently using standard index structures of databases, queries
for curves like arc splines need to be handled with more sophisticated methods. The work in
[Stone 11] treats these challenges and gives a complexity analysis for relevant queries as well.
At the initialization time of the self-localization system, a quadtree representing the digital map
is constructed from the map database, where it is sufficient to focus on map sections of a few
square kilometers around the vehicle position. Whenever the vehicle approaches the boundary
of the map section represented in the quadtree, the tree is updated according to a new region of
the map.
Once the quadtree cache is available, arbitrary map sections can be retrieved from it efficiently by
specifying the desired region of interest. This kind of query is required for the map data associa-
tion. For any given position (x, y) ∈ R2 and ρ ∈ R+, let r := [x− ρ, x+ ρ]× [y − ρ, y + ρ] ⊂ R2.
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The map section mapr corresponding to the region of interest r is given by

mapr := (Lr,Mr, Rr) ⊂ L×M×R (6.4.9)

with

Lr := {(p,A) ∈ L | p ∈ r} (6.4.10)

Mr := {(γ,A) ∈M | tr(γ) ∩ r 6= ∅} (6.4.11)

Rr := {(γ, ν, A) ∈ R | tr(γ) ∩ r 6= ∅} (6.4.12)

Fig. 6.4.2 shows a quadtree decomposition of a digital map section in the north of Munich.

6.5 Observation models

Observation models allow the integration of sensor measurements in order to deduce the state of
the considered dynamic system. According to the filtering methodology introduced in Section 2.2,
any observation model is a function from the state space Rn and the time T to the measurement
space Rm:

h : Rn × T → Rm (6.5.13)

The associated measurement uncertainty, modeled by the covariance matrix of the measurement
noise process in (2.2.28) and (2.2.44), is either given by the sensor characteristics or it is de-
termined empirically for each observation model by means of a system identification step (cf.
[Soderstrom 89, Goodwin 77, Graupe 72, Eykhoff 74, Walter 97]), which is not discussed further
within this work.
In the following, the essential observation models used for the vehicle self-localization are pre-
sented.

6.5.1 Observation model for road markings

The core of the observation model for road markings lies in the association of measurements
coming from the lane recognition system with road marking elements from the digital map. The
video-based lane recognition is described in Section 4.2. For each camera frame, the data process-
ing provides a set of real measurement points. Using the reconstruction techniques described in
Section 5.4.2, for each frame a finite set of measurement points PLR ⊂ R×{0} in the X,Y -plain
of the vehicle frame is available (cf. equation(5.4.16)).
Furthermore, for any vehicle position (x, y) ∈ R2, represented within the state model (6.2.1),
and ρ ∈ R+, the map section mapr = (Lr,Mr, Rr) ⊂ L×M×R corresponding to the region of
interest r is extracted using the equations (6.4.9) to (6.4.12). The value of ρ is chosen such that
all perceived and reconstructed objects lie within the region of interest2.
Before scoping on the observation model, the association of the reconstructed measurement points
PLR and the map section mapr should be declared. This is realized by formulating the task as
a prototype fitting problem.

2In the present case, it sufficient to choose ρ > L for the evaluation distance L in (4.2.7) within the local
road model of the lane recognition system. In the reference implementation, a value of ρ = 50 m proved to be
appropriate.
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Figure 6.4.2: Quadtree decomposition of a digital map up to the tree height 8. The zoom shows the
map section of a leaf, restricted to its corresponding rectangle. Road markings are drawn
in red while lanes are marked in green. Blue dots mark reflection posts while the red and
green dots represent a traffic sign and a tree.
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6.5.1.1 Prototype fitting

Shape matching or shape registration is the basis for many computer vision techniques, such
as image segmentation and pose estimation with applications in object recognition and quality
assurance tasks. Therefore, several publications on shape matching can be found in the literature.
A survey and a short summary is given in [Veltkamp 99] or [Rosenhahn 06]. Most of these
approaches rely on classic explicit shape representations given by points, which are possibly
connected by lines or other types of curve segments in order to form a shape.
The most common method working on explicit shape representations is the iterated closest point
(ICP) algorithm (cf. [Besl 92]): Given two shapes and an error metric, the task is to find a
mapping in an admissible class of transformations which leads to the minimum distance between
the two shapes. The ICP algorithm is then searching for an optimal rigid motion Φ : R2 → R2

matching a finite point set A ⊂ R2 to another set B ⊂ R2 as follows: For each point y ∈ A, the
best approximating point xy ∈ B regarding the Euclidean distance is calculated. Then, the opti-

mal transformation Φ̃ is determined that minimizes the sum of squared distances
∥∥∥Φ̃(y)− xy

∥∥∥2

between pairs of closest points (y, xy). Having this transformation applied to the point set A,
the three steps explained above are repeated until the algorithm converges. The convergence of
this algorithm is ensured to the next local minimum of the sum of squared distances between
closest points. Hence, a good initial estimate is required to ensure reaching the sought solution.
In order to improve the rate of convergence and to match partially overlapping point sets, several
variants of the ICP algorithm have been developed in the last decades (cf. [Rusinkiewicz 01]).
The so-called prototype fitting, which was introduced in [Donner 97], is a generalization of the ICP
algorithm. Within this work, broader classes of admissible transformations are treated, algorith-
mic improvements have been made and the corresponding theoretical bounds and convergence
behaviors are analyzed. For our purposes, the reference geometry is encoded as a compact subset
Π ⊂ R2, e.g. as a union of boundary curves, and it is called prototype. If points y ∈ A have been
extracted within a measurement process, the prototype fitting problem is the challenge to find a
feasible transformation Φ : R2 → R2 minimizing the sum of squares∑

y∈A
dist (Φ(Π), y)2 , (6.5.14)

where dist denotes the Euclidean distance3. Within any prototype fitting problem, the determi-
nation of best approximating points xy ∈ Π for each y ∈ A is the bottleneck of the computing
time. Therefore, a suitable encoding of Π, which minimizes the computational requirements for
the best approximating point calculation, is essential.
Naturally, the existence of optimal motions can only be assured if some restrictions and assump-
tions on the feasible transformations are made. In the present case, the admissible transforma-
tions are restricted to rotations and translations, which are mappings of the form

Tϕ,t : R2 → R2, x 7→ Aϕ · x+ t, (6.5.15)

3The question whether the prototype Π or the points A are transformed by Φ can be decided according to
the computational effort. The prototype fitting procedure, described in the following, can be formulated for both
decisions analogously.
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with ϕ ∈ [0, 2π[, t ∈ R2 and

Aϕ :=

(
cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)

)
∈ SO(2) (6.5.16)

where SO(2) denotes the special orthogonal group4 in R2. Hence, optimal parameters ϕ ∈ [0, 2π[

and t ∈ R2 are searched within the prototype fitting problem. The set T of all feasible mappings
is defined by

T :=
{
Tϕ,t : R2 → R2

∣∣ ϕ ∈ [0, 2π[, t ∈ R2
}
. (6.5.17)

It should be noted that, even for a larger class of admissible transformations, the pose estimation
regarding rotation and translation is important to have a first match. Afterwards, possibly more
sophisticated transformations, like non-isotropic scalings, projections or spline deformations can
be taken into account. Thus, focusing on the class T is sufficient within this scope. Then, the
problem can be solved very fast by an iterative approach.
To begin with, it is assumed that some initial transformation parameters ϕ0, t0 are known such
that the transformed prototype approximately fits to the given points. In order to obtain such
an initialization, some appropriate methods are presented in [Maier 11b].
In any case, after having found an initial transformation, the following iteration is performed:
Starting with Π(0) := Π, in the j-th step for j ∈ N, the best approximating points x(j)

i of yi with
respect to the set

Π(j) := Tϕj−1,tj−1(Π(j−1)) (6.5.18)

are computed. Using the abbreviation

x̃
(j)
i :=

(
0 −1

1 0

)
x

(j)
i for all i = 1, . . . , n (6.5.19)

and denoting the barycenters of x(j)
1 , . . . , x

(j)
n and y1, . . . , yn by

µx(j) :=
1

n

n∑
i=1

x
(j)
i and µy :=

1

n

n∑
i=1

yi, (6.5.20)

the optimal values ϕj ∈ [0, 2π[ and tj ∈ R2, i.e.
n∑
i=1

∥∥∥Tϕj ,tj (x(j)
i )− yi

∥∥∥2
= min

ϕ∈[0,2π[,t∈R2

n∑
i=1

∥∥∥Tϕ,t(x(j)
i )− yi

∥∥∥2
(6.5.21)

can be derived in a closed form (cf. [Maier 11b, Donner 97]): Using cj , sj ∈ R with

cj =
1

ρ

n∑
i=1

(x
(j)
i − µx(j))T yi, sj =

1

ρ

n∑
i=1

(x̃
(j)
i − µx(j))T yi, (6.5.22)

where ρ =
∑n

i=1

∥∥∥x(j)
i − µ

(j)
x

∥∥∥2
, the optimal rotation angle5 is given by

ϕj = arccos

 cj√
c2
j + s2

j

 . (6.5.23)

4The special orthogonal group in Rn is defined by SO(n) :=
{
M ∈ Rn×n

∣∣ det(M) = 1, MT = M−1
}
for any

n ∈ N.
5As explained in Section 7.2.1, it is not necessary to calculate the angle ϕj explicitly. Instead, accounting for

its sine and cosine values is sufficient.
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The optimal translation is given by tj = µy −Aϕjµx(j) . Using the abbreviation Tj := Tϕj ,tj , the
value

Ej :=
1

n

n∑
i=1

∥∥∥Tj(x(j)
i )− yi

∥∥∥2
(6.5.24)

indicates the prototype fitting error at step j. The sequence (Ej)j∈N is monotonic decreasing
since for all j > 0 it is true that

Ej =
1

n

n∑
i=1

∥∥∥Tj(x(j)
i )− yi

∥∥∥2
(6.5.25)

(a)

≤ 1

n

n∑
i=1

∥∥∥x(j)
i − yi

∥∥∥2
(6.5.26)

(2.1.3)
=

1

n

n∑
i=1

dist
(

Π(j), yi

)2
(6.5.27)

(6.5.18)
=

1

n

n∑
i=1

dist
(
Tj−1(Π(j−1)), yi

)2
(6.5.28)

(b)

≤ 1

n

n∑
i=1

‖Tj−1(x
(j−1)
i︸ ︷︷ ︸
∈Π(j−1)

)

︸ ︷︷ ︸
∈Π(j)

−yi‖2 = Ej−1 (6.5.29)

Inequality (a) holds since Tj minimizes the optimization problem formulated in (6.5.21). Fur-
thermore, inequality (b) is true since for any i ∈ {1, . . . , n}, j ∈ N and for any p ∈ Π(j)

dist
(

Π(j), yi

)
=
∥∥∥x(j)

i − yi
∥∥∥

2
≤ ‖p− yi‖2 (6.5.30)

holds by definition of the best approximating points (2.1.1.2).
By increasing j, the best approximating points x(j+1)

i of yi with respect to Π(j+1) can be computed
and the least squares problem is solved iteratively. This alternating procedure is continued while
Ej is greater than some given threshold or the difference between the predecessor error and the
current error is not smaller than some given threshold. Figure 6.5.3 illustrates the prototype
fitting of a curve prototype and some noisy fitting points.

6.5.1.2 Prototype Encoding

In order to achieve an efficient computation of this iterative method, it is decisive that the
calculation of the best approximating points with respect to Π is very fast. As already discovered
in [Besl 92] and [Donner 97], the necessity of a fast determination of best approximating points
does not depend on a special choice of the optimization method but it is also crucial when
using any other nonlinear optimization algorithm, like Gauß-Newton or Levenberg-Marquardt
(cf. [Nocedal 99]).
Indeed, the efficiency of the calculation of closest points depends on the encoding of the prototype
Π. Therefore, a description of Π as a union of curves having a preferably low number of segments
and providing a fast calculation of best approximating points is preferable. Furthermore, high
flexibility for modeling the desired geometric pattern is needed. Since almost all ICP methods are
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A

Π

(a) Initial situation (b) Final situation after convergence

Figure 6.5.3: Illustration of the prototype fitting. The prototype Π is encoded as an arc spline in blue.
The noisy fitting points A are drawn in black and their best approximating points on Π

are depicted in red.

based on point encodings of the prototype, sophisticated point selection approaches are needed
to achieve efficiency improvements. Obviously, a curve representation, as described above, has
considerable advantages over these techniques regarding accuracy, time and storage space.

One possible choice of such a curve fulfilling these criteria are arc splines, as discussed in Sec-
tion 2.1. Methods for efficiently calculating best-approximating points with respect to arc splines
are shown in Section 2.1.3.

6.5.1.3 Observation model

In the present case, the prototype fitting principle is used for the observation model in the
following sense: Based on the map section mapr = (Lr,Mr, Rr) from (6.4.9) around the current
position estimation of the vehicle, the prototype consists of the set of arc splines contained in
the road markings of mapr.

Π :=
⋃

(γ,A)∈Mr

tr(γ) (6.5.31)

Furthermore, the fitting points required by the prototype fitting correspond to the measurement
points PLR (cf. 6.5.1) extracted by the lane recognition. The initial transformation parameters
are based on the pose parameters (xk, yk, ψk) ∈ R3 of the vehicle state xk (6.2.1) at time tk.
Related to the inverse mapping of equation (5.4.15), the initial transformation T0 is given by
(6.5.15) with the parameters
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ϕ0 := ψk −
π

2
∈ [0, 2π[ (6.5.32)

t0 := −Aϕ0 ·

(
xk

yk

)
∈ R2. (6.5.33)

Regarding the filtering methodology described in Section 2.2.2.2, the fitting points PLR =

y1, . . . , yn represent some real measurements of a measurement update. Their corresponding
predicted measurements are given by the best approximating points with respect to the pro-
totype Π transformed by the initial transformation. Therefore, the road marking observation
model can be expressed as a family of functions (hi)i=1,...,n : R6×R→ R2 for any state xk ∈ R6

at time tk:
hi(xk, tk) = argmin

p∈T0(Π)
dist (yi, p) (6.5.34)

where dist denotes the Euclidean distance6. Thus, the residual vector (cf. (2.2.44))

vk :=


y1 − h1(xk, tk)

...
yn − hn(xk, tk)

 (6.5.35)

is related to the prototype fitting error (6.5.24) since

1

n

n∑
i=1

∥∥∥x(1)
i − yi

∥∥∥2
=

1

n
‖vk‖2 (6.5.36)

for the best approximating points x(1)
i of yi for i = 1, . . . , n with respect to the transformed

prototype T0(Π).
Figure 6.5.4 illustrates the prototype fitting principle for road markings. The measurement points
of the lane recognition (red pyramids) are associated with the best approximating points on the
road markings. The correspondences allow computing the transformation for the best fit.

6.5.2 Observation model for landmarks

The real measurements of the landmark observation model are given by detections of the laser
scanner processing described in Section 4.4. The result is a list of landmark hypotheses Hk :=

{p1, . . . , pn ∈ R2}, n ∈ N at time tk, represented by their coordinates in the X,Y -plain of the
vehicle frame.
Analogous to the road marking observation model (6.5.1.3), let mapr = (Lr,Mr, Rr) denote a
map section around the current position estimation. Referring to (5.3.2.1), let

Lk :=
⋃

(p,A)∈Lr

{p} (6.5.37)

6In general, the term argmin
x∈D

f(x) is set-valued. In this case, an adequate selection strategy is applied, such

that we write xmin = argmin
x∈D

f(x) instead of xmin ∈ argmin
x∈D

f(x)
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(a) Association of measurement points with road mark-
ings

(b) Constellation after the prototype fitting

Figure 6.5.4: Illustration of the prototype fitting on road markings

be the set of landmark positions represented withinmapr. Applying transformation T0 as defined
in Section 6.5.1.3 with respect to the current vehicle state estimation xk to Lk leads to the
predicted measurements of the landmark observation model. Thus, the observation model can
be seen as a function h : R6 × R→ P(R2):

h(xk, tk) = T0(Lk) (6.5.38)

for any xk ∈ R6, k ∈ N and where P(R2) denotes the power set of R2.

The association of the real measurementsHk and the predicted measurements T0(Lk) is a problem
that has been treated widely in the literature. As already discussed in Section 2.2.2.1, the more
general data association problem between real and predicted measurements can be handled with
probabilistic techniques presented in [Bar-Shalom 09, Bar-Shalom 95, Musicki 94]. Especially
in the field of vehicle localization on urban or rural road some approaches are discussed in
[Weiss 11, Pink 11, Weiss 05b, Lu 97].

6.5.3 Observation model for vehicle dynamics

In the present case, the dynamics parameters of the vehicle state xk (6.2.1) are directly observ-
able from the intrinsic measurements described in Section 4.3. These real measurements are
represented by a vector (vk, ck, βk) ∈ R3, denoting the absolute value of the velocity vk, the
curvature of the driven circular track ck and the slip angle βk. Hence, the observation model for
the vehicle dynamics parameters can be expressed as a linear function h : R6 × R→ R3 for any
xk ∈ R6, k ∈ N with

h(xk, tk) = A · xk (6.5.39)

and

A :=

 0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 . (6.5.40)
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6.5.4 Observation model for GPS

The GPS observation model describes the way, GPS measurements are integrated in the filtering
process. Again, let

(
x

(i)
k|k−1

)
1≤i≤M

be the set of M ∈ N+ particles at time tk according to

the notations in Section 2.2.2.2. Furthermore, let the geographic longitude λk ∈ [−π, π], the
geographic latitude ϕk ∈ [−π

2 ,
π
2 ] and the yaw angle ψk ∈ [0, 2π] be the measurements of the

GPS unit at time tk. Since the pose parameters of the vehicle are modeled in the navigation
frame, the position coordinates (λk, ϕk) need to be transformed from the world frame to the
navigation frame using the methods described in Section 3.1.2. Let therefore (lk, bk) ∈ R2 denote
the corresponding coordinates of (λk, ϕk) with respect to the navigation frame. Thus, the real
measurements are given by the vector (lk, bk, ψk) ∈ R3 and the GPS observation model is a
function h : R6 × R→ R3 for any xk ∈ R6, k ∈ N with

h(xk, tk) = A · xk (6.5.41)

and

A :=

 1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . (6.5.42)

However, GPS is only used for a rough reinitialization due to its expected positional inaccuracy.
Regarding the particle filter principle, this aspect can be modeled explicitly by applying the GPS
observation model not to all particles, but to only a (small) subset

(
x

(i)
k|k−1

)
1≤i≤j

of the particles(
x

(i)
k|k−1

)
1≤i≤M

for j ∈ N, j < M .

6.6 Resampling strategies

Within the particle filtering scheme discussed in Section 2.2.2.2, in each iteration, a resampling
strategy is applied in order to redistribute the particles

(
x

(i)
k|k

)
1≤i≤M

according to their weighting

w
(i)
k for all 1 ≤ i ≤ M . In addition to this procedure, some alternative resampling strategies

can be considered that allow modeling explicitly some preliminary knowledge on the particle
distribution.

6.6.1 Resampling by prototype fitting

The goal of the prototype fitting described in Section 6.5.1.1 is to determine a feasible transfor-
mation T : R2 → R2 minimizing the sum of squares

∑
y∈A

dist (T (Π), y)2 , (6.6.43)

for a given finite set of fitting points A ⊂ R2, some compact prototype Π ⊂ R2 and the Euclidean
distance dist.
In the present case, this method can be used for a resampling strategy of particles in the following
sense: Analogous to the road marking observation model in Section 6.5.1.3, let the prototype Π
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be defined by the road markings given in equation (6.5.31) and let the fitting points be given by
PLR (cf. 6.5.1), extracted by the lane recognition. Furthermore, the initial transformation T0 is
based on the pose parameters (xk, yk, ψk) ∈ R3 of the vehicle state xk (6.2.1) at time tk as in
Section 6.5.1.3.

Since the prototype fitting determines a transformation that best fits Π onto PLR in the least-
squares sense above, it can be used to correct the pose estimation represented in each particle(
x

(i)
k|k

)
1≤i≤M

at time tk in a direct way. Therefore, for any j ∈ N let Tj := Tϕj ,tj denote the

optimal feasible transformation at step j of the prototype fitting according to (6.5.21) with
ϕj ∈ [0, 2π[ and tj ∈ R2. Let n ∈ N denote the number of applied fitting steps leading to the
final transformation

T ? := Tn ◦ · · · ◦ T0. (6.6.44)

It is easy to show that T is closed with respect to composition, hence, T ? = Tϕ?,t? is an element
of T . The inverse7 mapping (T ?)−1 : R2 → R2 of T ? can now be used to characterize the
parameters of the corrected pose estimation.

(T ?)−1 := A−ϕ? · id−A−ϕ? · t? (6.6.45)

with A−ϕ? from (6.5.16). Finally, the corrected state pose parameters x?k, y
?
k, ψ

?
k ∈ R can be

expressed in terms of the components in (6.6.45):(
x?k
y?k

)
:= −A−ϕ? · t? (6.6.46)

ψ?k := ϕ? +
π

2
(6.6.47)

Based on these corrected pose parameters and using (6.5.15) and (6.5.32), the parameters of the
initial transformation T ?0 result in

ϕ0 = ϕ? (6.6.48)

t0 = −Aϕ0 ·

(
x?k
y?k

)
= t? (6.6.49)

which in turn leads to T ?0 = Tϕ?,t? = T ?. As already introduced in (6.5.24), let the prototype
fitting error at step j be defined by

Ej :=
1

m

m∑
i=1

∥∥∥Tj(x(j)
i )− yi

∥∥∥2
, (6.6.50)

where x
(j)
i denote the best approximating points of yi with respect to Π(j). Based on the

argumentation in (6.5.25), it is true that

7It is easy to show that (T ?)−1 ◦ T ? = id
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1

m

m∑
i=1

dist (T ?0 (Π), yi)
2 =

1

m

m∑
i=1

dist (T ?(Π), yi)
2 (6.6.51)

=
1

m

m∑
i=1

dist (Tn ◦ · · · ◦ T0(Π), yi)
2 (6.6.52)

=
1

m

m∑
i=1

dist
(

Π(n+1), yi

)2
(6.6.53)

≤ 1

m

m∑
i=1

dist
(
Tn(x

(n)
i ), yi

)2
(6.6.54)

= En ≤ E0 (6.6.55)

=
1

m

m∑
i=1

dist
(
T0(x

(0)
i ), yi

)2
. (6.6.56)

Hence, the parameter correction in (6.6.46) and (6.6.47) improves the pose estimation regarding
the prototype fitting error. As mentioned in the introduction of Section 6.6, the presented
resampling strategy is applied to the particles

(
x

(i)
k|k

)
1≤i≤M

or to a subset of it.

6.6.2 Resampling by map matching

Based on the assumption that vehicles are likely to drive on a specific lane within the drivable
area of a road, another resampling strategy is related to the map matching principle: For any
given vehicle position, the best approximating point on the nearest lane within a local map
section is computed.
Analogous to definition (6.4.9), let mapr = (Lr,Mr, Rr) be a local map section around the
position p = (xk, yk) ∈ R2 and orientation ψk ∈ R of the vehicle state xk (6.2.1) at time tk.
Furthermore, let Γ ⊂ R2 be defined by

Γ :=
⋃

(γ,ν,A)∈Rr

tr(γ). (6.6.57)

Using the methods in Section 2.1.3 and (2.1.3), a point p0 ∈ Γ is computed satisfying

‖p− p0‖2 = dist (p,Γ) (6.6.58)

and it represents the new vehicle position regarding this resampling strategy.
Let γ0 ∈ S denote the arc spline of a lane for which p0 ∈ tr(γ0) holds. Since the drivable
direction on a lane can be determined according to Section 5.3.4, the tangent vector τγ0(p0) ∈ R2

(cf. (2.1.1.1)) can be used to deduce a likely corresponding orientation of the vehicle.
However, since the assumption that the vehicle is always driving on lanes modeled within the
digital map represents a strong assumption, this resampling strategy should be handled carefully.
In the present case, it is rather used for initialization purposes taking into account a priori
knowledge from the map by applying the resampling method to a small subset of the particles.
Analogous to this resampling strategy, more hypotheses on vehicle poses can be modeled explic-
itly by spreading a subset of particles on each individual neighboring lane in a local environment
of the vehicle.
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Results

‘There are no such things as applied sciences,
only applications of science.’

(Louis Pasteur)
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7.1 Results from the map generation

In the following, some map generation results are shown concerning the application of the pre-
sented methods on both synthetic and real data. In the first section some results for the approx-
imation of a clothoid are presented. Then, in order to evaluate the map building methods on
different kinds of roads, some results of the arc spline approximation are shown based on data
of a typical highway and a winding mountain road. Finally, the mapping results for the digital
rural map in Ko-PER are presented.

7.1.1 Approximation of clothoids

As discussed in Section 5.2.2, turns on a road in rural areas are – at least constructionally –
commonly composed by a sequence of a straight line segment, a clothoid, a circular arc, a
clothoid and again a straight line segment. Defined by the equations (5.2.1) to (5.2.3), the
considered clothoid is determined by the length L ∈ R of the curve, the curvature radius R ∈ R
at the endpoint and the scaling factor a ∈ R, respectively.
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Since clothoids are not part of the lane model within this work, the question arises how clothoids
can be approximated by smooth arc splines. Such an approximation scheme is presented in
[Meek 04]. The so-called discrete clothoid, which is a smooth arc spline, results by approximating
a clothoid with a sequence of arcs such that the length of the individual arcs are constant, as
depicted in Figure 7.1.1. The curvature of the discrete clothoid, which is a step function, increases
in each step by 1

R·m where m is the number of arc segments. While the method proposed in
[Meek 04] allows controlling the approximation error, it does not guarantee the minimal possible
number of arc segments. However, the authors show that using n-times the number of segments
the approximation error behaves like O(n−2).

c1 c2 c3 c4 c5 c6 c7 c8

Figure 7.1.1: Approximation of a clothoid by a smooth arc spline (discrete clothoid, in blue) with 8
segments c1, . . . , c8 smoothly joining a given line and arc segment.

In the following experiment, clothoids of different lengths L and radii R at the endpoint are
considered. Given an approximation tolerance ε ∈ R, the approximation result described in
[Meek 04] is compared with the arc spline approximation used in this thesis. Furthermore,
the number of segments of the corresponding Minimum Link Path (MLP)1 (cf. Section 5.2.1,
[Suri 86]) is indicated.
According to the road construction regulation in [BFV 93] and [Richter 08], the clothoid param-
eter a is restricted with respect to R:

π
R

3
≤ a ≤ πR (7.1.1)

Using (5.2.3), the minimal and maximal length Lmin and Lmax is given by

Lmin =
R

9
, Lmax = R (7.1.2)

These lower and upper bounds correspond to the minimal and maximal deviation angle between
the tangents at the start point and at the endpoint of the clothoid under all feasible clothoid
parameters a respecting (7.1.1).

1Again, given a simple closed polygon P – in this case P approximately represents the ε-offset of the clothoid –
with a source and destination vertex, the MLP-algorithm produces a sequence of line segments connecting the
source and destination inside P with a minimal number of segments.
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15 25 50 100 250 500 1000 2500 5000

MLP 3 3 4 6 9 12 17 27 38
DC 1 2 2 3 4 6 8 13 18
SMAP 1 2 2 2 3 4 5 7 10

Table 7.1.1: Resulting segment numbers for a clothoid approximations with the Minimum Link Path
(MLP), the discrete clothoid (DC) and the arc spline approximation used within this thesis
(SMAP) with respect to the tolerance ε = 0.1 m and different arc lengths L (in meters).
The values correspond to the extremal clothoid parameter a = πR or L = R, respectively.

The resulting number of segments for the approximation of clothoids of different lengths using the
Minimum Link Path, the discrete clothoid and a SMAP are listed in table 7.1.1 and illustrated
in Figure 7.1.2. One can see that the SMAP approximation outperforms both the MLP and the
discrete clothoid regarding the number of segments.
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Figure 7.1.2: Illustration of the numbers of segments for the clothoid approximation results in ta-
ble 7.1.1. Note that the horizontal axis has a logarithmic scale.

More details and results concerning different clothoid parameters and tolerance values are pre-
sented in [Schindler 11].

7.1.2 Map building on a highway

In order to evaluate the arc spline approximation for highways, a single track of the highway
between Munich and Ingolstadt (cf. Figure 7.1.3) is considered with a length of 74, 60 km. The
corresponding ground data set of the track is represented by a point sequence of M = 37301

two-dimensional points. In the following experiment, this point sequence is approximated with
a smooth arc spline (SMAP) using the methods described in Section 5.4. As already explained
there, the approximation error (regarding the maximum norm) which is controlled by the toler-
ance ε ∈ R+ (cf. Section 5.4.3.2) is varied to show the performance for different map accuracy
levels.
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Figure 7.1.3: Map generation on a highway section

Left: OpenStreetMap sec-
tion of the highway (between
Munich and Ingolstadt in
Bavaria).
Right: SMAP approxima-
tion (red) of the input point
sequence. The zoom shows
the tolerance channel with
ε = 0.1 m.

Figure 7.1.4 shows the resulting segment numbers of the SMAP. Additionally, the segment num-
ber of the polygonal approximation of the point sequence with a Minimum Link Path (MLP) is
depicted.
Table 7.1.2 summarizes some approximation results concerning the segment numbers depending
on the tolerance ε. The compression factor comp is defined by the ratio comp := 2·M

2·nSMAP+3 based
on the total number of input points M and the SMAP segment number nSMAP . The definition
of comp reflects the discussion in Section 5.2.4, where it is shown that encoding a smooth arc
spline with nSMAP segments requires 2 · nSMAP + 3 floating points, while the representation of
the M input points results in 2 ·M floating points. The compression comp shows the significant
data reduction when using curves instead of point sequences. Furthermore, the data volume in
Byte per kilometer for storing the resulting arc spline approximation based on 64 Bit floating
point numbers is indicated.
In principle, the segment number of the approximation result decreases if the tolerance is in-
creased. For this experiment, the SMAP extension described in Section 5.4.3.2 is applied to
detect straight line segments in a heuristic way. The latter avoids arc segments with large radii
in favor of line segments. However, due to the heuristic integration strategy of line segments,
the total number of spline segments nSMAP can increase for larger tolerances ε (transition from
ε = 0.7 to ε = 0.8), which would not be the case for the standard version of the SMAP algorithm.
Regarding the ratio nMLP

nSMAP
, one can see that the SMAP algorithm reduces the segment number

significantly compared to the polygonal MLP results. When interpreting the segment numbers,
it should be emphasized that a SMAP, in contrast to an MLP, additionally reconstructs the
tangent information and provides an indicator for the curvature.
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Figure 7.1.4: Segment number for different tolerance values on the highway track.

ε nSMAP nl
Byte
km comp nMLP

nMLP
nSMAP

RMSE lavg lmax

0.10 173 21 37.4 213.75 546 3.15 0.0574 431.21 1813.79
0.15 121 21 26.2 304.49 436 3.60 0.0850 616.52 2581.56
0.20 113 22 24.5 325.77 375 3.31 0.118 660.17 2805.16
0.25 100 22 21.7 367.49 334 3.34 0.148 746.00 4012.65
0.30 97 21 21.1 378.69 305 3.14 0.180 769.07 4010.55
0.40 95 23 20.6 386.53 263 2.76 0.248 785.26 4008.27
0.50 89 24 19.4 412.16 233 2.61 0.319 838.20 4006.45
0.60 88 24 19.1 416.77 214 2.43 0.392 847.72 4014.83
0.70 87 24 18.9 421.48 201 2.31 0.461 857.47 4002.81
0.80 88 23 19.1 416.77 186 2.11 0.523 847.72 4013.47
0.90 86 22 18.7 426.29 174 2.02 0.603 867.44 4229.46
1.00 87 24 18.9 421.48 168 1.93 0.676 857.47 3871.58

Table 7.1.2: Approximation results for the highway track. The table summarizes the approximation
tolerance ε, the number of SMAP segments nSMAP including nl line segments, the data
volume per kilometer for the SMAP, the compression factor comp, the number of MLP
segments nMLP and the ratio between the segment numbers of the SMAP and the MLP
result. Furthermore, the root-mean-square fitting error RMSE of the input points, the
average and maximal length of the SMAP segments are given.
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The value RMSE ∈ R represents the root-mean-square error between the input points pi ∈ R2

1 ≤ i ≤M and the SMAP s ∈ S∞:

RMSE :=

√√√√ M∑
i=1

d(pi, s)2, (7.1.3)

where the distance d refers to definition (2.1.3). Obviously, the RMSE error is smaller than
ε which is defined by the maximum error. The values lavg and lmax represent the average and
maximal segment length (in meter) of the arc spline.
One can see that the segment number nSMAP does not change significantly within the range of
0.50 ≤ ε ≤ 1.00 though this interval represents a doubling of the approximation tolerance. This
observation indicates that the resulting spline curves model the road section in a realistic way.

7.1.3 Map building on a mountain road

Analogous to the previous section, a track on a winding mountain (cf. Figure 7.1.5) road is
evaluated regarding the approximation results with different tolerance values. The input point
sequence consists of 21733 two-dimensional points on a track length of 5949 m.

Map data © OpenStreetMap contributorsMap data © OpenStreetMap contributors

47°37'30"47°37'30"

47°38'47°38'

11°21'11°21' 11°21'30"11°21'30"

500 m500 m

Figure 7.1.5: Map generation on a winding mountain road

Left: OpenStreetMap sec-
tion of the winding mountain
road (between Kochelsee and
Walchensee in Bavaria).
Right: SMAP approxima-
tion (red) of the input point
sequence. The zoom shows
the tolerance channel with
ε = 0.1 m.

Figure 7.1.6 shows the relation between the approximation tolerance and the resulting segment
number for the approximation with the SMAP algorithm and the MLP algorithm. Again, one
can see that the SMAP approximation reduces the number of segments significantly compared to
the polygonal MLP approximation. For any tolerance ε < 0.1 m, the resulting segment number
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Figure 7.1.6: Segment number for different tolerance values on the mountain road track.

increases considerably. This effect is presumably due to the fact that the inaccuracy of the input
points is in the same order of magnitude as ε.
The ratio nMLP

nSMAP
between the segment numbers increases when ε is decreased. However, it should

be noted that the resulting segment number not only depends on the tolerance ε but it is also
dependent on the density of the input points, as the following example shows:

a

s

b c d

Figure 7.1.7: a: Circular arc s with radius r(s) = 1.0 as reference geometry
b: Tolerance channel based on a sampling sequence of s with 21 points and ε = 0.05

c: Tolerance channel based on a sampling sequence of s with 11 points and ε = 0.05

d: Tolerance channel based on a sampling sequence of s with 6 points and ε = 0.05. It is
not possible to construct a single arc passing through the entire tolerance channel.

Figure 7.1.7.a shows a circular arc with radius r(s) = 1.0 that corresponds to a road turn. This
arc is sampled with different numbers of points, which corresponds to different point densities
(relation between the number of points and the track length) at the extraction process of raw
measurement points as described in Section 5.4. Based on these point sequences, tolerance
channels with a fixed tolerance of ε = 0.05 are built. It is shown that the existence of a singular
arc passing through the tolerance channel depends on the point density. This example illustrates
that the point density should be as high as possible at the measurement extraction process for
map building.
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ε nSMAP nl
Byte
km comp nMLP

nMLP
nSMAP

RMSE lavg lmax

0.05 237 1 641.4 91.12 666 2.81 0.0302 25.10 86.27
0.10 161 1 437.0 133.74 462 2.86 0.0636 36.95 139.56
0.15 139 1 377.8 154.68 373 2.68 0.0982 42.79 137.78
0.20 127 1 345.6 169.12 324 2.55 0.134 46.84 136.03
0.25 115 4 313.3 186.54 287 2.49 0.171 51.73 134.05
0.30 109 4 297.1 196.67 261 2.39 0.205 54.57 139.86
0.40 98 4 267.6 218.42 226 2.30 0.273 60.70 151.15
0.50 90 4 246.0 237.51 201 2.23 0.345 66.10 183.42
0.60 87 4 238.0 245.57 184 2.11 0.422 68.37 205.58
0.70 85 5 232.6 251.24 169 1.98 0.497 69.98 200.98
0.80 81 7 221.8 263.43 158 1.95 0.577 73.44 206.68
0.90 79 7 216.5 269.97 147 1.86 0.637 75.30 213.86
1.00 79 9 216.5 269.97 138 1.74 0.723 75.30 183.58

Table 7.1.3: Approximation results for the mountain road track. The table summarizes the approx-
imation tolerance ε, the number of SMAP segments nSMAP including nl line segments,
the data volume per kilometer for the SMAP, the compression factor comp, the number of
MLP segments nMLP and the ratio between the segment numbers of the SMAP and the
MLP result. Furthermore, the root-mean-square fitting error RMSE of the input points,
the average and maximal length of the SMAP segments are given.

7.1.4 Digital map in Ko-PER

This section summarizes some results for the digital map generated in the Ko-PER project. In
particular, it is focused on the rural part of the map in contrast to the urban intersections, which
are treated within the project as well. The rural digital map covers some road sections located
in the north of Munich. Figure 7.1.8 shows five parts of the considered terrain, which offers a
relatively high diversity concerning the natural environment (wood and grassland), the elevation
profile (cambers and depressions) and, in particular, concerning the availability of road elements
(road markings and landmarks).
In contrast to the approximation experiments in Section 7.1.2 and 7.1.3, where the input data
consists of a point sequence, the digital map in Ko-PER has been created using the whole
processing chain described in Section 5.4 based on the data acquisition with the experimental
vehicle and the sensor configuration listed in the Appendix. Regarding the curve approximations,
a tolerance value of ε = 0.1 m was used for the arc spline fit.
Table 7.1.4 and 7.1.5 show some statistics on the resulting map elements. Twelve lanes are
used to cover the five road sections in both driving directions, including some gaps due to road
intersections or junctions. The high number of road markings is justified by the fact that each
individual dashed road marking in the center of the road is modeled separately. The average
length of road markings results from considering both dashed and continuous road markings on
the road edge. As indicated in Section 5.4.3.2, individual dashed road markings are represented
as line segments, which explains the short average length of 3.25 m.
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Figure 7.1.8: The rural digital map in Ko-PER with individual road sections.

quantity ltotal lavg lmax

Lanes 12 24436.85 2036.40 5136.36
Road markings 1331 16496.80 12.39 2244.27

Table 7.1.4: Number and lengths (total, average and maximal lengths in meter) statistics of smooth
arc splines modeling individual lanes and road markings.

Line segments Line segments
quantity lavg lmax quantity lavg lmax

Lanes 0 - - 327 74.73 316.14
Road markings 1313 3.25 45.01 185 66.07 315.20

Table 7.1.5: Number and lengths (average and maximal lengths in meter) statistics of spline segments
modeling individual lanes and road markings.
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Furthermore, 1331 landmarks, partially including their semantic classification, were captured.
This comprises traffic signs, reflections posts and trees along the way.
The different road sections 1 to 5 differ in the availability of road markings on the road edge.
While in section 1, markings are present in both the middle of the road and the road edge,
in section 2 to 4 only dashed road markings are available, separating two lanes. Additionally,
section 5 has some continuous road markings on the lane in north direction. This diversity allows
evaluating the self-localization approach for different configurations of map contents.

7.1.4.1 Evaluation of the map accuracy

In order to evaluate the accuracy of the map, a sequence high-precision reference points have
been captured using the stationary geodetic RTK-GPS measurement system specified in the
Appendix A.6. The reference points have an average global accuracy of 0.017 m according to
the internal quality measure of the geodetic device. A total of 38 reference points have been
captured on road markings and 41 reference points for landmarks (reflection posts) on both sides
of the road and spread over the road sections 1, 3 and 5 (cf. Figure 7.1.8). The reference points
are associated with the best approximating points on the nearest map elements as depicted in
Figure 7.1.9.

wref

wmap

dl dr

sl sr

pref,l pref,rpsl psr

Figure 7.1.9: Reference points pref,l and pref,r with best approximating point psl and psr on left and
right road markings sl and sr. The distances dl and dr are integrated in the root-mean-
square error of the global map accuracy. The reference road width wref is compared to
the road width in the map wmap for the evaluation of the relative map error.

Regarding the road markings, the root-mean-square error (RMSE) of the Euclidean distance
between all pairs of reference points and map correspondences was measured to 0.23 m. Some
further investigations showed that there was systematic error of the road markings in road
section 1. By computing a translation that minimizes the RMSE in a least squares sense, the
road markings in that section were corrected, finally leading to a RMSE of 0.10 m.
Likewise, the accuracy of the landmarks has been evaluated, resulting in a RMSE of 0.32 m.
Apart from the inaccuracy of the geodetic reference system, the computed RMSE errors of the
map elements reflect a global absolute map error. However, this high accuracy can only be stated
for the map elements next to the captured reference measurements.
There are several potential reasons for the remaining global inaccuracy of the map: During
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the extraction process of raw measurement points for the map generation based on the lane
recognition system described in Section 4.2, reconstruction errors may occur due to rotational
movements (pitching, rolling) of the vehicle relative to the road (cf. Section 3.1.3). This problem
could be handled using accurate ego-motion techniques as discussed in Section 3.2.1.
Furthermore, the accuracy of the RTK-GPS, which is used for the map building, directly influ-
ences the resulting map precision. Figure 7.1.10 visualizes the global accuracy of the RTK-GPS
unit on a part of road section 1. It can be seen that the accuracy is below 0.1 m for the most
part. The increase of the inaccuracy shown in the zooms is probably related to losses of the
differential GPS correction signal.
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Figure 7.1.10: Visualization of the RTK-GPS accuracy. The length of the colored line segments per-
pendicular to the road course corresponds to the accuracy value at that point.

The relative accuracy of the map has been investigated by comparing the road width of the map
wmap with the distance of two corresponding reference measurements wref on opposite road sides
(cf. Figure 7.1.9). The road width of the map elements is determined by the distance of the best
approximating points of the reference measurements. As a result, an RMSE of the road width
differences ‖wref − wmap‖ regarding all pairs of reference measurements has been determined to
0.16 m.
The remaining relative error of the map elements can be explained by two main effects: The arc
spline approximation is controlled by a tolerance channel with ε = 0.1 m, which corresponds to
an error with respect to the maximum norm. Since the individual road markings on both sides
of the road are approximated independently, a maximum deviation of the resulting road width
wmap is in the magnitude of 0.2 m.
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Furthermore, it should be noted that the outer road markings for opposite driving directions in
a map section are generated based on the processing of different sensor datasets. As discussed in
Section 5.4.2, a global postprocessing of the raw measurement points could enhance the relative
accuracy of the map significantly.
The average length of 287 dashed road markings was measured to 3.96 m, where the line segment
length is 4.0 m according to the road construction regulation in [BFV 93].

7.2 Self-localization results

7.2.1 Implementation notes

Before scoping the self-localization results, some notes on the reference implementation are given.

• Within the reference implementation of the particle filter, the vehicle state space (cf. Sec-
tion 3.2) is divided into the pose parameters x, y, ψ and the dynamics parameters v, c, β.
While the pose parameters form the state space of the particle filter, the individual dynam-
ics parameters are equal for all particles. This is motivated by the fact that the dynamics
parameters are directly determined by the intrinsic vehicle measurements (cf. Section 6.5.3)
but they are not influenced by any other observation model. All of the described dynamic
and observation model can be applied analogously. The resulting reduction of the particle
filter state space reduces the number of particles needed for an adequate approximation
of the state probability distribution, which in turn reduces the computational complexity
significantly.

• The yaw angle ψ is represented internally by its sine and cosine value, which simplifies
calculations of rotations in terms of the computational complexity. For instance, this is
the case in the motion model of the vehicle in (3.2.8).

• In order to reduce the search space for the calculation of best approximating points on road
markings, the caching strategy described in Section 6.4 is modified in the following way:
The set of road markings Mr within a region of interest r ⊂ R2 does not contain entire arc
splines representing individual road markings as indicated in (6.4.11) but Mr only reflects
the subset of spline segments having non-empty intersection with r.

• Due to several software optimizations like the examples mentioned above, the overall local-
ization approach is fully realtime capable using the hardware available in the experimental
vehicle as specified in the Appendix A.1. In numbers, this means that, based on a system
cycle time of 0.08 s (corresponding to one data acquisition of the synchronized camera and
laser scanner with a frequency of 12.5 Hz), the processing time of the localization strategy
is below 0.01 s. Thereof, the image processing methods (lane recognition) represent about
12 % of the time, the access to a map section is below 1 % and applying the observation
models of the particle filter including the map association is about 60 % of the time (42 %

for the road markings, 17 % for landmarks and 1 % for GPS and the vehicle dynamics).
The remaining 27 % of the time is spent for preprocessing and filtering of sensor data as
well as the organization and resampling of the particle filter.
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7.2.2 Evaluation method

The subsequent accuracy evaluations of the presented self-localization approach is based on the
RTK-GPS reference measurements, which are available at each frame. Since the frequency of
RTK-GPS measurements (100 Hz) is higher than the frequency of the video camera and the laser
scanner (both 12.5 Hz due to synchronization), a linear interpolation between the RTK-GPS
measurements is applied using the corresponding sensor time stamps in order to associate an
estimated vehicle pose with the reference data at the same point in time.
Let prefk = (xrefk , yrefk )T ∈ R2 and ψrefk ∈ [0, 2π] be the reference position and yaw angle of the
vehicle at time tk in the X,Y -plane of the navigation frame. Likewise, let pk = (xk, yk)

T ∈
R2 and ψk ∈ [0, 2π] denote the estimated vehicle pose parameters using the self-localization
approach presented in the previous chapter. Some essential quantities for the evaluation are
defined subsequently and depicted in Figure 7.2.11.
The vectors

d refk,lon :=

(
sin(ψrefk )

cos(ψrefk )

)
∈ R2 (7.2.4)

and

d refk,lat :=

(
0 −1

1 0

)
d refk,lon ∈ R2 (7.2.5)

represent the longitudinal and lateral2 reference orientation of the vehicle according to the lon-
gitudinal and lateral vehicle axes. The term

∆k := pk − prefk ∈ R2 (7.2.6)

denotes the difference vector between the localization estimation and the reference position.

prefk

pk

∆k

d refk,lon

d refk,lat

σ refk,lon

σ refk,lat R ref
k

ek,lon

ek,lat

Figure 7.2.11: Quantities of the evaluation method.

2The terms longitudinal and lateral refer to the axes of the vehicle and should not be confounded with the
geographic longitude and latitude in Section 3.1.1.
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The (signed) lateral and longitudinal localization error ek,lon and ek,lat as well as the orientation
error ek,yaw at time tk are defined as follows:

ek,lon :=
〈
d refk,lon

∣∣∣∆k

〉
, (7.2.7)

ek,lat :=
〈
d refk,lat

∣∣∣∆k

〉
and (7.2.8)

ek,yaw := ψk − ψrefk . (7.2.9)

Considering a whole data sequence of n ∈ N observation frames, the (unsigned) absolute errors
are defined by

ēlon :=
1

n

n∑
k=1

∣∣∣〈d refk,lon

∣∣∣∆k

〉∣∣∣ , (7.2.10)

ēlat :=
1

n

n∑
k=1

∣∣∣〈d refk,lat

∣∣∣∆k

〉∣∣∣ and (7.2.11)

ēyaw :=
1

n

n∑
k=1

∣∣∣ψk − ψrefk

∣∣∣ . (7.2.12)

Since all error values defined above directly depend on the accuracy of the RTK-GPS reference
system, its uncertainty must be considered as well.

Let R ∈ R2×2 be the covariance matrix of a normally distributed, two-dimensional random
variable. Then, the ellipse defined by

E :=
{
q ∈ R2

∣∣ qTR−1q = 1
}
⊂ R2 (7.2.13)

is commonly called uncertainty ellipse. The lengths of its half-axes correspond to the square
roots of the eigenvalues of R. In order to express an uncertainty value regarding R in a given
normalized direction v ∈ S1(0), we consider the Euclidean distance dv of the intersection between
E and a ray from the origin through v. The latter means solving the equation

(dv · v)TR−1(dv · v) = 1 (7.2.14)

for dv resulting in

dv =
1√

vTR−1v
. (7.2.15)

It is assumed that the measurements of the RTK-GPS system are normally distributed with
measurement noise covariance matrix R ref

k concerning the position in X,Y -plane of the navi-
gation frame. Using the direction vectors d refk,lon and d refk,lat ((7.2.4) and (7.2.5)), the longitudinal
and lateral accuracy of the reference system can be expressed by the standard deviations

σ refk,lon =
1√

(d refk,lon)T (R ref
k )−1(d refk,lon)

and σ refk,lat =
1√

(d refk,lat)
T (R ref

k )−1(d refk,lat)
. (7.2.16)
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7.2.3 Results of the self-localization evaluation

In the following, several scenarios are evaluated regarding the self-localization results. Therefore,
the quantities defined in the previous section are plotted over time. One unit on the time
axis corresponds to one internal system cycle of 0.08 s. The plots of the localization accuracies
show the errors (7.2.7), (7.2.8) and (7.2.9) over time, including the corresponding RTK-GPS
uncertainty (7.2.16). Furthermore, the average absolute errors (7.2.10), (7.2.11) and (7.2.12) as
well as their standard deviations are indicated in the description under the plots.
It should be noted that all subsequent error values refer to the global accuracy of the self-
localization approach and not to a relative error regarding the digital map.

Scenario Section Direction Comment

1 1 north Road markings on all road sides
2 1 south Opposite direction of scenario 1
3 2 north Poor map content with dashed markings in the road mid
4 3 north Poor map content with cambers on the road
5 - south Challenging scenarios
6 - - Investigations on a longitudinal localization error
7 2 north Localization without laser scanner landmarks
8 1 north Importance of precise sensor timestamps

Table 7.2.6: Scenario overview for the self-localization evaluation. The section number refers to one of
the five road sections in Figure 7.1.8.

For each scenario, data sets of several passages with the experimental vehicle are available, such
that a statistically relevant evaluation of the localization results can be realized.



104 Chapter 7. Results

7.2.3.1 Scenario 1

In this scenario, road markings are available on both sides as well as in the middle of the road.
The average absolute errors in lateral and longitudinal direction are in a range below one me-
ter. The orientation error is significantly below 1◦. In general, the main causes for remaining
localization errors are

• global inaccuracies of digital map elements,

• outliers in the reconstructed measurement points and landmarks due to the environment
perception methods,

• association errors between the perceived objects and map elements.

In the highlighted areas of Figure 7.2.13a, 7.2.13b and 7.2.13c, an overtaking maneuver was
driven. The relative stability of the error plots in these regions show the robustness of the
localization approach regarding lane changes.

Figure 7.2.12: Position and orientation of the vehicle corresponds to the estimated pose of the self-
localization strategy based on the association of perceived objects with elements of the
digital map. Individual lanes are marked in orange. Extracted measurement points
of the lane recognition (red pyramids) are associated with road markings. Landmark
hypotheses of the laser scanner (yellow) can be related to corresponding landmarks in
the map (trees, reflection posts). The camera image is displayed on the right top.

For both directions (longitudinal and lateral), one can see a systematic error. Concerning the
lateral error, the sensor data processing of the camera and the laser scanner landmarks as well
as the association with map elements works well at this section (cf. Figure 7.2.12). Furthermore,
the uncertainty of the RTK-GPS reference is relatively low (mostly below 0.1 m), which justifies
putting confidence in the stated error values. In all comparable data sets for this scenario,
the same systematic error characteristics are visible, like the increase of the lateral error in the
highlighted areas in Figure 7.2.14, which shows a comparison of several passages of scenario 1.
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Figure 7.2.13: Localization results of scenario 1
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This leads to the assumption that the lateral localization error can be traced back to a global
inaccuracy of the road markings in this map section. In fact, no map reference measurement
points (cf. Section 7.1.4.1) were available in this part, so that the global map accuracy could not
be evaluated in that region. The systematic longitudinal error is investigated in Section 7.2.3.6.
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Figure 7.2.14: Comparison of several passages of scenario 1 focusing on the lateral localization error.
The boxes highlight a section of the passage from where the lateral error increases in
all considered data sets. This effect is probably due to a global inaccuracy of the road
markings in this map section.
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7.2.3.2 Scenario 2

This scenario represents the passage of road section 1 in south direction. In this case, the
localization results are even superior to the north direction and they show rarely systematical
lateral errors. This can be explained by the fact that the individual lanes and road markings for
the north and south direction are mapped based on different data sets, which were captured by
passages of the experimental vehicle in the corresponding driving directions.
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-4

-2

 0

 2

 4

 0  500  1000  1500  2000  2500

O
ri

en
ta

ti
on

 e
rr

or
 [
°]

Frame
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Figure 7.2.15: Localization results of scenario 2
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7.2.3.3 Scenario 3

In road section 2 (cf. Figure 7.1.8), dashed road markings in the road mid are available but there
are no road markings on the sideways road edges as depicted in Figure 7.2.16. Hence, measure-
ment points extracted by the lane recognition can only be associated with the road markings in
the middle of the road. Nevertheless, the resulting localization errors remain relatively small, as
detailed in the plots of Figure 7.2.17.

Figure 7.2.16: Association of perceived objects with elements of the digital map. Measurement points
of the lane recognition (red pyramid) are associated with the dashed road markings
in the middle of the road. The landmark hypotheses of the laser scanner (yellow) are
associated with landmarks (trees, reflection posts) in the map if applicable.

In this scenario, it is remarkable that there are no landmark hypotheses between frame 100
and 400 within the data set, which is possibly due to a sensor failure. Thus, the map-based
localization strategy is purely video-based within this section. The longitudinal localization
error increases, since no associations of landmark hypotheses and corresponding map elements
can be realized. However, the lateral localization error remains small (in average about 0.1 m for
this section).
The inaccuracies starting from frame 450 can be attributed to two reasons: At first, the lane
recognition extracts partly erroneous measurement points due to reflections on the road surface.
Then, these measurement points are associated misleadingly with the only available dashed road
markings in the middle of the road, resulting in a localization error regarding the lateral position
and the orientation.
The uncertainty of the RTK-GPS reference is relatively low all the time (about 0.02 m), which
allows authoritative statements on the localization errors. The overall localization results are
significantly below 1 m regarding the position errors and below 1◦ regarding the orientation error.



7.2. Self-localization results 109

-2

-1

 0

 1

 2

 0  100  200  300  400  500  600  700  800

L
at

er
al

 p
os

it
io

n
 e

rr
o
r 

[m
]

Frame
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Figure 7.2.17: Localization results of scenario 3
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7.2.3.4 Scenario 4

Similar to road section 2 and 4, only dashed markings in the middle of the road are available in
road section 3. After the relatively high uncertainty of the RTK-GPS reference (0.15 − 0.20 m)
in the beginning of the sequence, the positional localization results are in a range below 1 m

except for outliers. The orientation error between frame 50 and 140 can be traced back to a
camber on the road (cf. Figure 7.2.18g) which is combined with a right turn. Due to the rise,
the vehicle’s pitch angle relative to the upcoming road section changes and oscillates for a few
seconds, resulting in a modified relative view of the camera on the road. As a consequence, the
measurement points of the video-based lane recognition are reconstructed erroneously, which,
in turn, leads to errors in the estimation of the orientation by associating the measurement
points with road markings. This kind of error could potentially be reduced when considering
the elevation profile of the lanes (cf. Section 5.3.4.1) at the reconstruction step of measurement
points as well as an adequate pitch compensation.

7.2.3.5 Scenario 5, Challenging scenarios

The quality of the localization results depends decisively on the performance of the environment
perception methods for the extraction of landmarks and the lane recognition. In some test
sequences in winter time, the vehicle moved in the direction of the low sun. The strong insolation
can cause total reflections on the wet road surface and glare effects in the camera image as
depicted in Figure 7.2.19. These effects worsen the conditions for the image processing methods
within the lane recognition.
As shown in Figure 7.2.19, strong glaring leads to overload effects of the camera. The sharp
contrast along the solar ray causes the extraction of measurement points in the lane recognition
in that region, which, then, are associated with road markings in the digital map. As a result,
errors regarding the pose estimation occur in the self-localization. Furthermore, the snow on
the road edge builds a higher contrast than the line markings on the road, causing an erroneous
extraction of measurements as well.
To cope with these problems, the lane recognition could be enhanced with a more sophisticated
strategy for the detection of road markings in order to robustly keep track of the lane even
under bad conditions. However, extremal weather and environment conditions probably remain
challenging for any video-based perception system. Therefore, sensor data fusion concepts, which
combine the advantages of several different kinds of sensors, represent a promising way for dealing
with more challenging scenarios.
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Figure 7.2.18: Localization results of scenario 4
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Figure 7.2.19: Strong reflections and glare effects due to the specular road surface and the direct solar
radiation. The measurement points (red pyramids) extracted by the lane recognition
lead to localization errors when associating with road markings in the digital map.

7.2.3.6 Scenario 6, Longitudinal localization error

In most of the considered data sequences, a systematic longitudinal localization error could be
observed in the results. More precisely, the position estimation is located in front of the RTK-
GPS reference position in driving direction (ek,lon > 0 in (7.2.7)). This effect is observable for
both driving directions, to the north and to the south. As a result of the localization strategy,
the estimation of the longitudinal position is mainly determined by the association of landmarks
rather than by the association of road markings. The latter, in turn, define primarily the es-
timation of the lateral position and the orientation. Thus, it is supposed that the longitudinal
localization error is related to the landmark association.
In order to investigate this effect, the following experiment has been run: In each frame, the
positions of the landmarks detected by the laser scanner were compared to the landmarks avail-
able in the digital map, where the vehicle pose was determined by the RTK-GPS and not by the
localization approach above. In an ideal case, these landmark correspondences should coincide.
However, it could be observed that in both cases of driving directions (north and south), the
landmark hypothesis of the laser scanner were located closer to the vehicle than the landmarks
in the digital map. Figure 7.2.20a and 7.2.20b visualize the same map section including two
reflection posts on the road sides. The images show the passage of the vehicle in north and
south direction. In both cases, the landmark hypotheses (yellow) are located closer to the vehi-
cle compared to the landmarks in the map. This observation is consistent with the longitudinal
localization error which results when associating these landmarks.
The reason for this error could not be identified ultimately but the observed longitudinal differ-
ence could be related to an error within the temporal interpretation of the landmark hypotheses.
The effect would be explainable if these landmarks are associated with a too early timestamp
within the raw sensor data. A longitudinal difference of 0.30 − 0.40 m corresponds to a times-
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(a) south direction (b) north direction

Figure 7.2.20: In both driving directions, the landmark hypotheses (yellow) are located closer to the
vehicle compared to the landmarks in the map.

tamp inaccuracy of 0.012− 0.016 s when driving 90.0 km/h. However, it should be recalled that
a global localization accuracy in the magnitude of half a meter widely fulfills the requirements
on the localization quality defined on behalf of this work.

7.2.3.7 Scenario 7, Localization without laser scanner landmarks

In this experiment, the performance of the self-localization approach is investigated regarding the
case of ignoring all laser scanner landmark hypotheses. This modification simulates the absence
of the laser scanner and results in a map-based localization strategy that is purely based on
video, GPS and the vehicular intrinsic measurements.
Figure 7.2.21 summarizes the localization results of this modified approach on the same road
section for two different values of the GPS initialization accuracy. One can see, that the quality
of the GPS initialization influences the localization results significantly. In both cases (Fig-
ure 7.2.21a and 7.2.21b), the lateral localization error decreases after a about 60 frames (4.8 s)
which is mainly due to the map-based resampling strategy described in Section 6.6.2 which ex-
plicitly uses a priori knowledge on the individual lanes. For the rest of the sequence, the lateral
localization error remains relatively small. In the last third of the sequence in Figure 7.2.21b,
the lateral position accuracy is disturbed by wrong associations of measurement points and road
markings due to the orientation error (cf. Figure 7.2.21f).
The most interesting observation is that the GPS initialization accuracy has a significant influ-
ence on the longitudinal localization error. This can be explained by the fact that the longitudinal
localization is mainly determined by the laser scanner landmarks which are, in fact, missing in
this experiment. It is evident that the observation model for road markings cannot distinguish
between subsequent dashed road markings and hence it is not able to correct the initial longi-
tudinal localization error (Figure 7.2.21d) in case of bad GPS initialization within this example.
However, the experiment shows that if the positional initialization accuracy is high (in this ex-
ample about 5 m were enough) then the localization approach performs well even in the absence
of the laser scanner.
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-4

-2

 0

 2

 4

 0  100  200  300  400  500  600  700  800  900

O
ri

en
ta

ti
on

 e
rr

or
 [
°]

Frame
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Figure 7.2.21: Comparison of the localization results without laser scanner landmarks for different
GPS initialization accuracies. The longitudinal localization error largely depends on
the quality of the position initialization. The high standard deviations suffer from the
positional and orientational error at the starting phase.
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7.2.3.8 Scenario 8, Localization without precise timestamps

In the localization approach described in this thesis, the sensor data is temporally interpreted
according the associated timestamps related to the sensor acquisition time (cf. Section 4.1).
These sensor timestamps are depicted in Figure 7.2.22 in the rows for the laser scanner, the
camera and the RTK-GPS reference. In order to show the importance of the correct temporal
interpretation of the sensor data, the following experiment is run:

In a modified localization approach, the sensor timestamps are replaced by standard timestamps
defined by the start of the next system cycle, as illustrated in Figure 7.2.22 in the row for the
system cycle. The dotted cross lines between the sensor acquisition time and the start time of
the next system cycle symbolizes the sensor specific delay caused by the internal processings of
raw data within the sensors as well as the transmission of data and handling within the hard-
and software frameworks.

The negative effect of these delays can be seen in Figure 7.2.23, where the standard version of
the localization (with sensor timestamps) is compared to the modified version (without sensor
timestamps). One can see that both the lateral positional error (Figure 7.2.23a and 7.2.23b) and
the orientation error (Figure 7.2.23e and 7.2.23f) do not change significantly when ignoring the
sensor timestamps. However, the longitudinal error is substantially worse when not using the
precise sensor timestamps. Furthermore, the increase of jitter can be traced back to the inability
of exactly associating the RTK-GPS reference with the pose estimation for lack of the sensor
timestamps.

laser scanner

camera

RTK-GPS

availability in
software framework

synchronized

system cycle

time
t1 t2 t3 t4 t5

∆t ∆t ∆t ∆t

Figure 7.2.22: Illustration of sensor timestamps and delays

The experiment shows that it is worth spending the effort to the precise generation and asso-
ciation of timestamps since the localization results can be improved significantly regarding the
accuracy and the robustness.
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-2

-1

 0

 1

 2

 0  200  400  600  800  1000  1200  1400  1600  1800  2000

L
at

er
al

 p
os

it
io

n
 e

rr
o
r 

[m
]

Frame
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Figure 7.2.23: Comparison of the localization results with and without using the sensor timestamp.
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7.3 Résumé

In this thesis, methods and models for a map-based vehicle self-localization approach have been
presented. The proposed digital map model, which is based on smooth arc splines, shows sev-
eral positive characteristics regarding efficient calculations of best approximating points, offset
curves, curvature information and the lengths of curve segments. Furthermore, the integration
of elevation profiles allows modeling a 3D representation in a compact way. Regarding the map
generation, for any given maximal tolerance, the applied curve approximation method generates
a smooth arc spline with a minimum number of segments. These properties are most valuable
for digital maps since they imply the checkability of accuracy of map elements as well as the
minimization of data volume required for storing the map. Also, the advantages are profitable
not only for the self-localization observation models defined in this work, but they represent an
additional value for further automotive applications.
The suitability of the presented mapping strategy has been demonstrated on both simulated and
real data. By means of an extensive evaluation for different kinds of roads and approximation
accuracy levels, it has been shown that the approach developed in this thesis generally outper-
forms the widely-used map modeling with polygons or other arc spline approximations when
judged by criteria like efficiency of map calculations, data volume and information content.
Based on the presented map model, a vehicle self-localization approach has been proposed. The
basic idea is to associate information from the vehicular environment perception with corre-
sponding elements of the digital map in order to deduce the vehicle’s position. The probabilistic
self-localization strategy fuses data from a video camera, laser scanner, GPS and intrinsic vehic-
ular measurements in a particle filter framework. It has been shown that a global localization
accuracy in both lateral and longitudinal direction significantly below one meter and an orien-
tation accuracy below one degree can be reached even at a speed up to 100 km/h in real-time
using the methods presented. Thus, the localization strategy satisfies the accuracy requirements
defined by the advanced driver assistance applications. A series of experiments demonstrated
the robustness of the approach regarding different levels of details in the map, altering sensor
configurations and environment conditions.
It has been shown that the mapping approach and the self-localization strategy presented in this
work represent a promising concept for future systems within the field of active traffic safety.

7.4 Possible future work

Since the performance of the environment perception methods influences the quality of the self-
localization results significantly, it is recommended to further improve the sensor data processing
like the lane recognition. The robustness and reliability of the environment perception system
could be enhanced by integrating other sensors or processing methods on behalf of the sensor
data fusion.
For future approaches, the accuracy of the digital map can be enhanced by mapping methods
based on several passages of road sections. It is assumed that, on behalf of a preprocessing step
of the extracted raw measurement points, a SLAM-based optimization is appropriate for filtering
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outliers and increase the relative accuracy of the measurement points. Due to this preprocessing,
applying the presented methods for the subsequent generation of continuous map elements yields
digital maps of even higher quality. Since the accuracy of the map determines the precision of
the map-based self-localization strategy, it es expected that the above mentioned optimization
technique leads to better positioning results as well.
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A.1 Specification of the experimental vehicle

Figure A.1.1: BMW 528i experimental vehicle

Name BMW 528i

Type Sedan

Onboad CPU Intel Core i7, 2.8GHz

Memory 4GB DDR3 RAM

Table A.1.1: Technical specification of the experimental vehicle
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A.2 Specification of the IDS uEYE camera

Figure A.2.2: IDS uEYE camera

Name IDS uEYE UI-6220SE-M-GL camera

Measuring principle Frame-Shutter
Sensor chip 1/2" CCD
Frequency range 400− 700 nm

Dynamic range high dynamic range
Distance range greater than 2m
Opening angle horizontal: 46.7◦, vertical: 38.6◦

Angular resolution 0.06◦

Pixel resolution 768× 576

Aspect ratio 4 : 3

Measuring frequency maximal: 52 Hz

used: 12.5 Hz due to synchronization with laser scanner
Exposure time 50µs− 10 min in trigger mode
Supply voltage 12 V

Interface Ethernet
Dimensions 34.00× 44.00× 43.50 mm

Mass 108 g

Table A.2.2: Technical specification of the IDS uEYE camera.
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A.3 Specification of the SICK LD-MRS laser scanner

Figure A.3.3: SICK LD-MRS laser scanner

Name SICK LD-MRS-400001

Measuring principle Laser scanner with 4 scan layers
Frequency range 905 nm

Distance range 0.3-200m
Opening angle horizontal: 100◦

vertical: 0.8◦ between two scan layers, 3.2◦ in total
Distance resolution 4 cm

Angular resolution 0.125◦

Measuring frequency 12.5 Hz

Supply voltage 12 V

Interface Ethernet
Dimensions 85.00× 128.00× 93.00 mm

Mass 1 kg

Table A.3.3: Technical specification of the SICK LD-MRS laser scanner.
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A.4 Specification of the Novatel OEMV GPS receiver

Figure A.4.4: Novatel OEMV GPS receiver

Name Novatel OEMV Family

Measuring principle GPS receiver
Position accuracy 1.5 m

Velocity accuracy 0.1 m/s

Code-phase noise 0.20 m

Measuring frequency 10 Hz

Supply voltage 12 V

Interface Serial interface (RS-232)

Table A.4.4: Technical specification of the Novatel OEMV GPS receiver.
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A.5 Specification of the OXTS RT3003 reference positioning sys-
tem

Figure A.5.5: OXTS RT3003 reference system

Name OXTS RT3003

Measuring principle Inertial RTK-GPS measurement system
Antenna 2 × G5Ant-2AMNS1
Differential correction ASCOS (axionet) RTCM 3.1 [ASCOS 12]
Position accuracy 2 cm

Velocity accuracy 0.05 km/h

Yaw accuracy 0.1◦

Roll/Pitch accuracy 0.03◦

Slip angle accuracy 0.15◦ (at 50 km/h)
Measuring frequency 100 Hz

Supply voltage 9− 18 V

Dimensions 234.00× 120.00× 80.00 mm

Mass 2.4 kg

Table A.5.5: Technical specification of the OXTS RT3003 reference positioning system. All accuracy
values refer to one standard deviation.
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A.6 Specification of the Leica GPS1200 system

Figure A.6.6: Leica GPS1200 geodetic system

Name Leica GX1230+ GNNS

Measuring principle Geodetic RTK-GPS measurement system
Differential correction Leica SmartNet, RTCM v3 or ASCOS (axionet) RTCM 3.1

[ASCOS 12]
Position accuracy 1 cm

Supply voltage 12 V

Dimensions 212.00× 166.00× 79.00 mm

Mass 1.2 kg

Table A.6.6: Technical specification of the Leica GPS1200 system. All accuracy values refer to one
standard deviation.
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