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Abstract

Let P be a simple polygon with interior I and two disjoint edges designated as the start

and the destination. A smooth arc path is a sequence of circular arcs and line segments

joined smoothly and staying inside the closure of I. We elucidate the construction of a

smooth minimum arc path, i.e. a start-destination smooth arc path with the minimal

possible number of segments. Although this problem is well-known, it hasn't been solved

yet. We present a mathematical characterization of possible solutions that enables a

constructive approach leading to an O(n2) algorithm, where n denotes the number of

vertices. However, in many practical applications our algorithm is even sub-quadratic.

In fact, our approach is more general since we do not restrict ourselves to polygons but

to a broader class of bounding curves, namely piecewise restricted analytic curves. We

were able to show our constructive characterization of solutions for this class of curves

as well.

Zusammenfassung

Sei P ein einfaches Polygon mit Innengebiet I und zwei als Start und Ziel ausgezeich-

neten, disjunkten Kanten. Unter einem smooth arc path verstehen wir eine Folge von

Kreisbögen und Strecken-Segmenten, die glatt zusammengesetzt sind und im Abschluss

von I verlaufen. Wir interessieren uns für die Konstruktion eines smooth minimum arc

path, d.h. für einen glatten Start-Ziel Pfad mit minimaler Anzahl an Segmenten. Ob-

wohl das Problem seit längerem bekannt ist, konnte es bisher nicht gelöst werden. Wir

präsentieren eine mathematische Charakterisierung möglicher Lösungen, die ein kon-

struktives Verfahren ermöglicht. Dieses Verfahren lässt sich schlieÿlich als Algorithmus

mit quadratischer Laufzeit (abhängig von der Anzahl der Ecken n von P ) implemen-

tieren. In vielen praktischen Tests konnten wir jedoch eine subquadratische Laufzeit

feststellen.

Tatsächlich ist unser Ansatz sehr viel allgemeiner. Wir lassen nicht nur Polygone als

begrenzende Kurve, sondern eine weitaus breitere Klasse von Kurventypen zu, nämlich

stückweise analytisch fortsetzbare Kurven. Für diese Kurventypen gelang es ebenso

unsere konstruktive Beschreibung der Lösungen zu beweisen.
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1
INTRODUCTION

In this preliminary chapter we motivate our work by giving an example of practical

use in Reverse Engineering. The way in which an algorithm for computing a smooth

arc path can be used for automatically generating CAD models from a quasi planar

working piece is, however, only brie�y outlined. Exact de�nitions and propositions are

given in the following chapters. A more detailed presentation and some more examples

of applications can be found in Chapter 5.

In the second section we discuss some well-established results of visibility tasks in Com-

putational Geometry. We then give a short overview of visibility in the classical sense

and variations existing on this subject, and we classify the challenge of computing a

(smooth) minimum arc path within the �eld of visibility problems.

As minimum arc paths are included in the class of arc splines, we discuss known ap-

proaches to approximating points and curves by arc splines in Section 1.3.

Section 1.4 summarizes the main aims and results, whereas in the �fth section we give

a short outline of this thesis.

`Dimidium facti, qui coepit, habet.

Once you've started, you're halfway there.'

(Horace, Roman lyric poet)
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1.1 Motivation

The border of an object which can be seen in a camera image is called contour. The

appropriate description of the contours of a quasi-planar object is an essential step when

generating CAD1-layouts automatically. It plays a crucial role in quality assurance pur-

poses and vision metrology. Though the automatic generation of CAD models represents

a standard problem in Reverse Engineering2, a satisfying solution hasn't been found yet.

We pursue a mathematical modeling that is in step with recent practice and yields an

e�cient algorithmic implementation.

Optical sensors generally sample objects only discretely. Therefore, the border of a cap-

tured object can simply be extracted as a �nite list of pixel coordinates (cf. Section 5.1).

By connecting adjacent points with each other, we get a simple polygonal curve, a so-

called contour point list. For instance, a circular bore hole would yield a polygon with

thousands of vertices. Obviously, this does not provide an adequate description and is

computationally expensive so that it is improper for further software processing.

In fact, a representation of the contour by a (smooth) planar curve approximating the

extracted points is desirable.

1.1.1 Problems in Sensor Sampling

Optical sensors can only provide a �nite subset of such a curve. Since the corresponding

coordinates are digitized, i.e. rounded, they are additionally subjected to errors. Every

sampling is a physical measuring process, which means that the values have only �nite

accuracy. Consequently, the requirement that the curve has to run through all original

points of the contour point list doesn't make much sense. However, the distance to these

points should not be too big. The curve should therefore approximate them as well as

possible. This requirement is met by accepting a maximum distance depending on the

various positions.3

1
Computer-Aided Design (CAD) is the use of computer technology to aid in the design and particu-

larly the drafting of a part or product.

2Reverse Engineering is a process, which involves measuring an object and then reconstructing it as

a CAD model.

3A more detailed presentation can be found in Chapter 5.



1. Introduction 3

1 2 3

�

�

�

�
sensor capturing

discrete sampling

pixel image

�

�

�

�
contour extraction

�nite list of pixels

contour point list

�

�

�

�
description as curve

model for further

processing

- -

Figure 1: The particular steps from a real object to a CAD drawing.

1.1.2 Choice of the Curve Model

We are interested in a curve that not only approximates the extracted points up to

unavoidable tolerance errors but also describes them e�ectively, i.e. with minimal com-

plexity. Such a characterization allows coping with tasks in industrial quality control,

like contactless measurement and shape recognition, more e�ciently (see Chapter 5).

As already indicated, polygons are not suited as a curve model, in this case. One ap-

proach in modeling contours is their description as (circular) arc splines, i.e. curves

composed of circular arcs and line segments. Above all, smoothness at the breakpoints

is required in order to enable a realistic modeling.1. Since they are determined by only

a few parameters and satisfy important invariance criteria, like invariance with respect

to rotations, scalings and translations (cf. Section 2.5), they can be applied well to mea-

surement tasks. A promising solution would be a smooth arc spline approximating the

contour with respect to a given tolerance.

1An exact de�nition can be found in Section 2.5.
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start destination start destination

Figure 2: Start-destination channel including contour points (left) and smooth minimum arc path

(right).

1.1.3 Competing Optimization Criteria

This approach turns the approximation problem outlined above into a multi-objective

optimization: Obviously, the approximation error diminishes if the number of line and

arc segments increases. The more exactly the contour points are approximated the more

segments are needed. Hence the proposed method minimizes the number of segments

while keeping a given tolerance that possibly can vary locally.

1.1.4 Start-Destination Channel

Our approach controls the approximation error by only focusing on solutions staying in-

side a so-called start-destination channel. Typically, such a channel is given by a simple

polygon or an arc spline (cf. Figure 2). In addition, a source and a destination segment

are �xed. Any smooth arc spline staying inside the start-destination channel and con-

necting the source and destination segments with a minimum number of segments solves

the problem. As has already been mentioned, we call such a spline smooth minimum

arc path.
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1.1.5 Constructive Solution

The existence of a solution is quite easy to prove. However, practical implementation

requires concrete and constructive approaches. For this purpose, a mathematical char-

acterization of solutions by alternating sequences and feasible direction sets is supplied.

Alternating sequences are families of points on the bounding curve of the channel that

are alternately touched from the left and from the right as indicated in Figure 2 on

the right. It is shown, how these theoretical results lead to the development of e�cient

algorithms.
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1.2 Visibility in Computational Geometry

Visibility and intersection problems are among the most fundamental topics in Compu-

tational Geometry1. The problems of shortest paths and visibility inside simple polygons

have been extensively studied in the last three decades (cf. [41]).

As a part of our short overview2 of visibility problems, we now present the following

situation: Let P be a simple polygon with interior I. By I we denote its closure.

One of the fundamental visibility problems is the computation of a point-visibility poly-

gon, which means the subset of I that is visible from a point p ∈ I, i.e. the set of all

points x ∈ I s.t. there exists a line segment l ⊂ I connecting p and x (cf. Figure 3 top

left). Such line segments are called visibility line segments. Joe and Simpson developed

in [2] a linear-time algorithm for constructing a point-visibility polygon inside a simple

polygon.

Another fundamental visibility problem is the computation of an edge-visibility polygon

(cf. Figure 3 bottom left). Introduced by Avis and Toussaint (cf. [10]), edge visibility is

divided into three categories, complete, strong and weak:

Let e be an edge of P and let us denote the line segment running from x to y ≠ x by

l(x, y). A subset M ⊂ I is

i) completely visible from e if for all x ∈M and for all y ∈ e the line segment l(x, y) is
a visibility line segment.

ii) strongly visible from e if there exists a point y ∈ e s.t. for all x ∈M the line segment

l(x, y) is a visibility line segment.

iii) (weakly) visible from e if for all x ∈ M there exists a y ∈ e s.t. the line segment

l(x, y) is a visibility line segment.

Whether a polygon is completely or strongly visible to a given edge can be answered by

the kernel algorithm developed by Lee and Preparata (cf. [53]), and whether a polygon

is weakly visible from an edge can be solved in linear time (cf. [10]). Guibas et al.

show in [44] that an edge-visibility polygon inside a triangulated simple polygon can be

constructed in linear time.

1Computational Geometry is a discipline of Computer Science which is concerned with e�cient algo-

rithms and representations for geometric computation.

2This overview mainly follows [10], [23] and [39].
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Among other variations on this subject, circular visibility was introduced by Agarwal

and Sharir (see [4]). Whereas linear visibility is established by straight lines, circular

visibility is established by circular arcs. Considering line segments as arcs with in�nite

radius, visibility can be extended by considering circularity. A point x is circularly

visible from a point p ∈ I if there exists a circular arc running from p to x without

leaving the polygon P (cf. Figure 3 top right). Such an oriented circular arc (clockwise

or counterclockwise) is called visibility arc.

Besides being a natural extension of linear visibility, circular visibility is well suited to

model physical systems like trajectories of electrically charged particles in a uniform

magnetic �eld (cf. [39]).

Chou and Woo gave in [23] a method to compute the circular visibility inside a simple

polygon in linear time. A so-called Circular Visibility Diagram (CVD) represents these

sets of circular arcs by their centers in a planar partition. In [22] Chou et al. have shown

how to determine the circular visibility of a given edge by using CVDs (cf. Figure 3

bottom right). The general ray tracing problem, i.e. computing the �rst intersection of

a circular ray starting from an arbitrary point, has been solved by Agarwal and Sharir

(cf. [3]). The �rst intersection can be computed in O(log4 n) time with O(n log3 n)
preprocessing, where n is the number of vertices of the polygon.

Other possible variations involve generalizing the concept of a rectilinear polygon to the

concept of a splinegon that is introduced by Dobkin and Souvaine (cf. [29]). A splinegon

is a simple closed curve whose trace consists of `curved edges', where every curved edge

is contained in the boundary of its convex hull. In fact, a splinegon is a polygon bounded

by algebraic curves which is implicitly given as the solution to a polynomial equation in

two variables.

López and Ramos (see [39]) gave linear time algorithms for computing the weak visibility

polygon of an arc inside a triangulated splinegon. They have also developed a linear

time algorithm for computing the circular, elliptic, parabolic and hyperbolic visibility

polygon of a point inside a simple polygon.

Similarly to visibility, other problems have been treated in literature: There are various

criteria for optimizing the path between a source and a destination. For instance, a

minimum link path minimizes the number of turns (see Figure 4 top), whereas the

shortest path minimizes the length of the path (cf. [44]). Since this is related to the
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p p

e e

x

x

x x

Figure 3: Various types of visibility polygons (shaded portions). Top: Linear and circular visibility

with respect to a point p. Bottom: Linear and circular visibility with respect to an edge e. There are

also some visibility arcs / line segments of x depicted.
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Figure 4: A minimum link path (5 segments), minimum arc path (3 segments) and a smooth minimum

arc (4 segments) path within the same polygon and source edge s and destination edge d.

visibility problem, many papers provide e�cient algorithms for computing the minimum

link path inside a polygon. (e.g. [73, 74, 6, 9, 7]).

Several papers dealing with the computation of convex and simple paths of bounded

curvatures between two points s and t and two directions of travel exist (cf. [15, 1]).

However, none of the papers discusses the challenge of computing a (smooth) minimum

arc path, a path from a given source edge to a given destination edge composed of

circular arcs with a minimum number of segments (see Figure 4 middle and bottom).

Particularly, such challenges have not been studied in any other context but within a

boundary given by a polygon or splinegon.

It is well known that computing a minimum link path can be done iteratively but when

generating a smooth minimum arc path, it is not clear at all where to put the break-

points. However, the mathematical results of Chapter 3 enable an iterative approach.
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1.3 Related Work on Arc Splines

The interest for arc splines is not strictly limited to the �eld of Computational Geome-

try. Their use is equally relevant to approximation tasks and applications in Geometric

Modeling ([82, 21]), Computer Graphics ([68, 21]), Computer Vision ([68]) and Robot

Path Planning ([82]). Because of their invariance with respect to translations, rotations

and scalings and their easy o�set computation, they are especially appropriate for the

automatic generation of CAD data from measuring point sequences as well as tasks in

Reverse Engineering (cf. Section 1.1 and Section 5.4) and target-performance compar-

isons of planar geometries like laminations, panes of glass and planks of shelves. As

in computer-aided manufacturing environments tool paths are usually composed of line

segments and circular arcs, arc splines play a very important role in many further appli-

cations such as Computerized Numerical Control (CNC) machinery (e.g. [21, 84, 85, 86]).

We will present some examples of these applications in Chapter 5.

Research on arc splines has been very active in the last decades (e.g. [58, 59, 60, 70, 84,

82, 81, 33]). Two classical references to arc splines are [72] and a book of Nutbourne and

Martin ([61]). Research covers both continuous arc splines (e.g. [54, 55, 33]) and smooth

arc splines1. Currently, the superior properties of smooth arc splines over continuous

ones are being emphasized. Hence recent research on arc splines has focused on smooth

arc splines (e.g. [65, 64, 82, 21, 85, 33]).

In particular, curves composed of biarcs, which are smooth curve segments consisting

of two circular arcs, have been used in a large number of algorithms for approximation

or interpolation of given point (and possibly tangent) data. For instance, Meek and

Walton have discussed biarcs in a number of publications (e.g. [58, 59, 60]). Drysdale et

al. [33] have presented an algorithm for approximating polygonal curves by continuous

arc splines and curves composed by biarcs respectively with a minimum number of seg-

ments. However, all approaches currently known su�er from (unnecessary) restrictions

to feasible arcs and biarcs. Mostly, they have to start and end at original points, and in

case of biarcs the tangent directions at the starting and end point are usually determined

by the original points as well. Hence the breakpoints of the approximating arc spline

must be original points, which is very restrictive.

1Smooth arc splines are curves composed of circular arcs and line segments having a continuously

di�erentiable parametrization. An exact de�nition can be found in Chapter 2.
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1.4 Aim of this Work and Main Results

Our goal is to develop an e�cient algorithm that computes a smooth minimum arc path

inside an arbitrary start-destination channel. A start-destination channel is de�ned by

a piecewise restricted analytic Jordan curve with two designated circular arcs or line

segments denoted as start and destination.

As seen in Section 1.2, a priori it is not clear where to put the breakpoints when com-

puting a smooth minimum arc path, which is di�erent when computing a minimum

link path. Nevertheless, we give a mathematical characterization of possible solutions

based on feasible direction sets and alternating sequences which enable a constructive

and iterative approach. Thus, we can develop a greedy algorithm1 solving the problem.

This approach is substantially expandable even to cyclic channels.

When improving the e�ciency of our algorithmic approach, we focus on start-destination

channels given by a simple polygon P . Denoting the interior of P by I, we have already

seen that the subset of I which is circularly visible from a point in I can be determined by

computing its Circular Visibility Diagram (CVD) in O(n)-time, where n is the number of

the vertices of P . Therefore, our algorithm uses CVDs iteratively to construct a smooth

minimum arc path, which leads to an O(kn)-time algorithm where k is the number of

CVDs computed. In the worst case k equals n, but in many practical applications k is

considerably smaller than n.

In particular, arc paths are arc splines. Hence computing a smooth minimum arc path

inside a suitable start-destination channel enables a new and e�cient approach to ap-

proximating two dimensional point data and curves by (smooth) arc splines. In contrast

to the existing approaches (c.f Section 1.3), we can guarantee a minimum number of

segments without any restrictions to the breakpoints. By the width of the channel we

can �exibly and locally control the maximum tolerance error. Therefore, our results

make a considerable contribution to quite a lot of applications in all the research �elds

mentioned in the previous sections.

Based on mathematical foundations, this thesis is thus a bridging of Nonlinear Approx-

imation and Computational Geometry with applications in Computer Vision, Graphics

and Computer Aided Design in mind.

1A greedy algorithm is an algorithm that follows the strategy for making the locally optimal choice

at each stage (cf. [24]).
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1.5 Outline of this Thesis

After having seen a short introduction to one motivating application in Reverse Engi-

neering, some introductory comments on visibility in Computational Geometry, a sum-

mary of well-known methods in approximation with arc splines and an overview of the

main results, the remaining part of the thesis consists of three main parts:

The mathematical part starts with fundamentals concerning conics, approximation the-

ory, Hausdor� metric, planar curves and circular arc splines, which are discussed in

Chapter 2. This chapter mainly serves to present well-established results and familiar-

ize the reader with our notation.

In Chapter 3 we elucidate a mathematical modeling of the problem sketched in Chap-

ter 1. We introduce various forms of circular visibility and characterize smooth minimum

arc paths within so-called tolerance channels.

The second part includes our algorithmic approach in which algorithms for computing

circular n-visibility and (smooth) minimum arc paths are outlined. Especially, the case

of tolerance channels given by polygons, is thoroughly discussed.

In Chapter 5, the third main part, we sketch some applications of (smooth) minimum arc

paths for tasks in Reverse Engineering, Shape Recognition and Curve Approximation.

Finally, in Chapter 6 we give an overall résumé of this thesis and have a look at potential

further work.







2. Basic De�nitions and Notation 15

2
BASIC DEFINITIONS AND

NOTATION

In this preliminary chapter we �x some notation and state well-established results. How-

ever, we only focus on notions and results which are needed in the main part. We mostly

keep away from far-reaching generalizations of de�nitions and terms but con�ne ourselves

to introducing useful language in a relatively short manner. Readers who are familiar

with all those basics may skip this chapter and merely refer to it for the main notations.

In the �rst section of this chapter we introduce conics and circles and establish some of

their properties. Before introducing some notions and properties of the Hausdor� metric

and its expansion, the local Hausdor� topology, we present some well-known results of

Set-Valued Analysis and Approximation Theory. In the fourth section the theory of

planar curves is introduced to �nally enable a de�nition of arc splines. This de�nition

and some properties of arc splines are worked out in the �fth section.

Since we sometimes use notation which might appear uncommon, we want to refer to

page 211 �., where you can �nd an exhaustive list of the symbols we'll subsequently use.

`Everyone knows what a curve is,

until he has studied enough mathematics

to become confused through the countless number

of possible exceptions.'

(Felix Klein, German mathematician)
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2.1 Conics and Circles

The theory of conics is well-established (cf. [14]). Therefore, we only give a short intro-

duction to familiarize the reader with our notation.

For n,m ∈ N let Pn(Rm,R) denote the vector space of the real valued polynomial

functions on Rm of degree at most n. A set C ⊂ Rm is called quadric if there exists a

polynomial p ∈ P2(Rm,R) ∖ {0} whose zero set is C, i.e. C = p−1({0}). Since the zero
set doesn't change when multiplying p with a non-zero real number, every projective

point x ∈ S ∶= P(P2(Rm,R)) corresponds to a quadric Cx. Let us denote the projective
equivalence class of the polynomial p by p̂. However, it should be noted that the mapping

Φ ∶ S → Q, Φ(x) = Cx is not bijective, where Q denotes the set of all quadrics. For

instance, the two polynomials p(x, y) = x2 + 1 and q(x, y) = 1 have empty zero sets but

their equivalence classes p̂ and q̂ are obviously distinct. In the case m = 2, quadrics are

also called conics .

2.1.1 Remark. The polynomials p0, . . . , p5 ∈ P2(R2,R) de�ned by p0(x, y) ∶= x2,

p1(x, y) ∶= xy, p2(x, y) ∶= y2, p3(x, y) ∶= x, p4(x, y) ∶= y and p5(x, y) ∶= 1 for (x, y) ∈ R2,

form an R-basis of P2(R2,R).

A special type of conics are (generalized) circles , consisting of points, lines, circles

and the empty set. Since this thesis deals with arc splines, we focus on this subset.

2.1.2 Remark. Generalized circles appear, as is well-known, as zero set of polynomials

p = ∑3
i=0αiqi ∈ P2(R2,R) ∖ {0} with coe�cients αi with at least one αi ≠ 0, where

q0(x, y) = p0(x, y) + p2(x, y) = x2 + y2, q1(x, y) = p3(x, y) = x, q2(x, y) = p4(x, y) = y and

q3(x, y) = p5(x, y) = 1, with p0, . . . , p5 as in Remark 2.1.1. The corresponding vector

subspace Pcirc ∶= span(q0, q1, q2, q3) has dimension four.

2.1.3 Remark. The more common de�nition of a circle is C = {x ∈R2 ∣ ∥x − c∥ = r}
with center c ∈ R2 and radius r > 0 and a line is given in the form l ∶= a +Rv for some

a ∈R2 and v ∈ S1, where S1 denotes the unit sphere of R2 and ∥⋅∥ the euclidean norm.

2.1.4 Lemma. The zero set C = Cp̂ given by a polynomial p =
3

∑
i=0
αiqi is

i) a line ⇔ α0 = 0, but αi ≠ 0 for some i ∈ {1,2},
ii) a circle ⇔ α0 ≠ 0 and α1 + α2 > 4α0α3,

iii) the whole plane R2 ⇔ αi = 0 for all i = 0,1,2,3,
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Proof. E.g. [66], 5.2.

2.1.5 Lemma. Given three points x1, x2, x3 ∈ R2, there exists at least one generalized

circle containing them. If these three points are pairwise distinct, the generalized circle

is unique. Similarly, given two points x1, x2 ∈ R2 and a vector e ∈ S1, there exists at

least one polynomial p ∈ Pcirc satisfying p(x1) = p(x2) = 0 and ⟨e∣∇p(x1)⟩ = 0, where

∇p(x1) denotes the gradient p at x1. All such polynomials p yield the same projective

equivalence class p̂ if x1 ≠ x2.
Addendum: Four arbitrary distinct points x0, x1, x2, x3 ∈R2 are on a generalized circle

if and only if

det

⎛
⎜⎜⎜⎜
⎝

q0(x0) ⋯ q3(x0)
⋮ ⋮

q0(x3) ⋯ q3(x3)

⎞
⎟⎟⎟⎟
⎠

= 0,

with q0, . . . , q3 from Remark 2.1.2.

Proof. A polynomial p ∈ Pcirc with p(xi) = 0 for all i = 1,2,3 is in demand. But x1, x2, x3

are roots of p if and only if the coe�cients α0, α1, α2, α3 ∈ R with p =
3

∑
i=0
αiqi satisfy the

linear system of equations

⎛
⎜⎜⎜⎜
⎝

q0(x1) ⋯ q3(x1)
q0(x2) ⋯ q3(x2)
q0(x3) ⋯ q3(x3)

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

α0

α1

α2

α3

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

and at least one coe�cient does not vanish. The system matrix has maximal rank 3.

Therefore, the solution space is at least one-dimensional, i.e. the system has non-trivial

solutions.

In the second case we have a desired polynomial p =
3

∑
i=0
αiqi if and only if

⎛
⎜⎜⎜⎜
⎝

q0(x1) ⋯ q3(x1)
q0(x2) ⋯ q3(x2)

⟨e∣∇q0(x1)⟩ ⋯ ⟨e∣∇q3(x1)⟩

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

α0

⋮
α3

⎞
⎟⎟⎟⎟
⎠

= 0

which can be simpli�ed to

⎛
⎜⎜⎜⎜
⎝

⟨x1∣e1⟩2 + ⟨x1∣e2⟩2 ⟨x1∣e1⟩ ⟨x1∣e2⟩ 1

⟨x2∣e1⟩2 + ⟨x2∣e2⟩2 ⟨x2∣e1⟩ ⟨x2∣e2⟩ 1

2 ⟨e∣x1⟩ ⟨e∣e1⟩ ⟨e∣e2⟩ 0

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

α0

⋮
α3

⎞
⎟⎟⎟⎟
⎠

= 0
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when setting e1 ∶= (1,0)T and e2 ∶= (0,1)T . Again, the solution space is non-trivial. If x1

and x2 are distinct, the system matrix has rank 3 due to e ≠ 0. Therefore, the solution

space has dimension 1 and the coe�cients α0, . . . , α3 solving the system are unique up

to scale. Four pairwise distinct points x0, x1, x2, x3 ∈R2 are on a generalized circle if and

only if there exists a non-trivial coe�cient vector (α0, . . . , α3) ∈R4 with ∑3
i=0αiqi(xj) = 0

for j = 0, . . . ,3. But this is equivalent to the existence of a non-trivial solution of the

following homogeneous linear system of equations:

⎛
⎜⎜⎜⎜
⎝

q0(x0) ⋯ q3(x0)
⋮ ⋮

q0(x3) ⋯ q3(x3)

⎞
⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜
⎝

α0

⋮
α3

⎞
⎟⎟⎟⎟
⎠

= 0.

In turn, this is obviously equivalent to

det

⎛
⎜⎜⎜⎜
⎝

q0(x0) ⋯ q3(x0)
⋮ ⋮

q0(x3) ⋯ q3(x3)

⎞
⎟⎟⎟⎟
⎠

= 0,

which proves the addendum.

These results lead to the following de�nition:

2.1.6 De�nition. For three pairwise distinct points x1, x2, x3 ∈ R2 let C(x1, x2, x3)
denote the uniquely determined generalized circle containing them. By abuse of notation

we also denote the circle containing x1 and x2 and having tangent direction v ∈ S1 in x2

by C(x1, x2 ∣ v).

2.1.7 De�nition. A non-empty connected and compact set A ⊂R2 is called (general-

ized) arc if it is a subset of a circle or a line.

We now give a brief and rather historical excursus to mathematical results concerning

circles and lines, which partly follows [78]. The so-called Apollonius' Problem concerns

the following: Given three objects, each of which may be a point, line or circle, draw

a circle that is tangent to each. There are a total of ten cases. Euclid solved the two

cases involving three points and three lines in his Elements, and the others (with the

exception of the three circle problem), appeared in the Tangencies of Apollonius which

was, however, lost. The general problem is, in principle, solvable by straightedge and

compass alone.
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The three-circle problem was solved by Viète (cf. [16]), and the solutions are called

Apollonius circles . There are eight total solutions. A solution is obtained by solving

the three simultaneous quadratic equations

(x − x1)2 + (y − y1)2 − (r ± r1)2 = 0 (1)

(x − x2)2 + (y − y2)2 − (r ± r2)2 = 0 (2)

(x − x3)2 + (y − y3)2 − (r ± r3)2 = 0 (3)

in the three unknowns x, y, r for the eight triplets of signs (cf. [25]). Expanding the

equations gives

(x2 + y2 − r2) − 2xxi − 2yyi ± 2rri + (x2i + y2i − r2i ) = 0

for i = 1,2,3. Since the �rst term is the same for each equation, taking (2) − (1) and

(3) − (1) gives
ax + by + cr = d

a′x + b′y + c′r = d′,

where a = 2(x1 − x2), b = 2(y1 − y2), c = 2(±r1 ± r2), d = (x21 + y21 − r21) − (x22 + y22 − r22) and
similarly for a′, b′, c′ and d′ (where `2' is replaced by '3'). Solving these two simultaneous

linear equations, plugging back into the quadratic equation (1) and using the quadratic

formula, we can calculate a solution. Figure 5 depicts an exemplary situation.

2.1.8 Remark. Using the abbreviations P - point, L - line and C - circle, which are taken

from [45], we list the ten di�erent constellations of input data and give the maximum

number of di�erent solution in Table 2.1 (cf. [69]):

Table 2.1: The di�erent constellations of the Apolloninus' Problem

type PPP LLL PPL PLL PCL CLL CPP CCP CCL CCC

nr. of sol. 1 4 2 2 4 8 2 4 8 8
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Figure 5: Example of the three-circle problem. The given circles are depicted solid, orange and the

eight possible solutions are the dashed, black circles.
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2.2 Set-Valued Analysis and Approximation Theory

Since generalized arcs and circles are subsets of R2, i.e. an element of the power set

P(R2), we deal in this section with set-valued maps and sequences of sets. We introduce

the terms of lower and upper semi-continuous mappings in case of compact valued maps.

In addition we want to present the notion of cones, especially tangent cones, and state

some important properties.

For the remaining part of this section let X and Y be metric spaces and F ∶X →P(Y )
a set-valued mapping with F (x) compact for all x ∈X, and our notion follows [8], [43]

and [30]. We set Dom(F ) ∶= {x ∈X ∣ F (x) ≠ ∅}, and Bε(x) ∶= {y ∈X ∣ dX(x, y) < ε} for

an arbitrary point x ∈ X and ε > 0, where dX is the metric on X. For a subset M ⊂ X
we de�ne:

Bε(M) ∶= ⋃
x∈M

Bε(x).

2.2.1 De�nition. F is said to be upper semi-continuous at x ∈X if

∀ε > 0 ∃δ > 0 ∀x′ ∈ Bδ(x) ∶ F (x′) ⊂ Bε(F (x)).

The mapping F is called upper semi-continuous if F is upper semi-continuous at

every x ∈X.

2.2.2 De�nition. F is said to be lower semi-continuous at x ∈X if for any y ∈ F (x)
and any sequence (xn)n∈N converging to x, there exists a sequence of elements yn ∈ F (xn)
converging to y. The mapping F is called lower semi-continuous if F is lower semi-

continuous at every x ∈X.

2.2.3 De�nition. F is said to be continuous (at x ∈ X) if F is upper and lower

semi-continuous (at x ∈X).

A topological formulation can be found in Section 2.3. We will use both of them. It is

easy to see that Dom(F ) is closed if F is continuous.

2.2.4 Example. The set-valued map1 F1 ∶R→P(R2) de�ned by

F1(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

[−1,1] , x ≠ 0

{0} , x = 0

1This example is taken from [8], p.41.
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is lower but not upper semi-continuous at 0, whereas the map F2 ∶R→P(R2),

F2(x) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{0} , x ≠ 0

[−1,1] , x = 0

is upper but not lower semi-continuous at 0.

2.2.5 Lemma. If X is locally compact and if for every compact subset K of X the set

{(x, y) ∈K × Y ∣ y ∈ F (x)} is compact, then F is upper semi-continuous.

Proof. See [8], Prop. 1.4.12.

Now we focus on another useful concept, the concept of cones.

2.2.6 De�nition. Let E be a real vector space. A subset A of E is called a cone if

λx ∈ A for all x ∈ A and λ > 0.

Let (Ai)i∈I be a family of cones in E. It is clear that the empty set, ⋂i∈I Ai and ⋃i∈I Ai
are also cones. The closure A of a cone A is also a cone and 0 ∈ A if E is normed and

A ≠ ∅. If 0 /∈ A, the cone generated by A ∩ S1 equals A, i.e.

{λx ∣ λ > 0, x ∈ A ∩ S1} =∶]0,∞[⋅(A ∩ S1) = A.

2.2.7 De�nition. Let n ∈N, M ⊂Rn and a ∈M . The cone

TM(a) ∶= ⋂
ε>0

]0,∞[⋅(Bε(0) ∩ (M − a))

is called tangent cone to M at a.

2.2.8 De�nition. Given two non�empty metric spaces (X,dX) and (Y, dY ) and a map-

ping f ∶X → Y , we de�ne the graph of f as follows:

graph(f) ∶= {(x, f(x)) ∣ x ∈X} ⊂X × Y.

Tangent cones characterize local tangent directions to M , even if an approach via clas-

sical di�erentiation concepts is not possible. The following Lemma gives a connection

to the theory of di�erentiation.

2.2.9 Lemma. Let m,n ∈N, U be an open subset of Rm and f ∶ U →Rn be di�erentiable

at u ∈ U . Using the abbreviation a ∶= (u, f(u)) we obtain: Tgraphf(a) = graph(Df(u)),
where D denotes the di�erential operator.

Proof. See [31].
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2.3 Hausdor� Metric and Local Hausdor� Topology

We now sketch some theoretical background and mathematical foundations concerning

set�valued mappings and set limits. We want to present this within a comfortable

topological framework which is not so common. The de�nitions and results are mainly

based on set limits as seen in the previous section (cf. [8]). Thus, this chapter deals with

a general topological foundation of some basic concepts of set�valued analysis. The

following treatise is mainly based on [30].

The notion of set limits, as introduced in [8] and [51], can be formulated in the setting

of topological spaces. In fact, we end up with a metrizable topological space if the

underlying locally compact space is σ�compact and metrizable. Let us �rst brie�y

sketch some topological technicalities.

2.3.1 De�nition. Let (X,d) be a metric space.

1) For non-empty sets A,B ⊂X we de�ne the distance

dist(A,B) ∶= inf
x∈A

inf
y∈B

d(x, y).

We set dist(A,B) ∶= ∞ if A or B is empty. If A is a singleton {x} we use the

notation dist(x,B) instead of dist({x},B). In case of X = Rn endowed with the

euclidean norm dist is also called the euclidean distance.

2) Let K(X) denote the system of all non-empty, compact subsets of X and C(X) the

system of all closed subsets of X.

3) We endow K(X) with the Hausdor� metric

h(A,B) ∶= max{sup
x∈A

dist(x,B), sup
x∈B

dist(x,A)}.

If X is complete, the metric space (K(X),h) is complete as well (cf. [47]).

If (X,d) is a locally compact metric space possessing a sequence of compact subsets

covering X (σ�compactness), a sequence (Kn)n∈N of compact subsets of X exists s.t.

Kn is contained in the interior K○
n+1 of Kn+1 for every n ∈ N and ⋃

n∈N
K○
n = X. If X

is compact, Kn = X for su�ciently large natural numbers n is implied. An increasing

covering sequence (Kn)n∈N of this type is called an exhaustive sequence in X. For every

n ∈ N
dn(A,B) = max{sup

x∈A
dist(x,B ∪X ∖Kn), sup

x∈B
dist(x,A ∪X ∖Kn)}
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is a pseudometric on C(X) ∖ {∅}. The sequence (dn)n∈N de�nes a locally compact

topology on C(X) ∖ {∅} (see [30], Section 7). Endowing C(X) with the topology of

Alexandrov's one point compacti�cation of C(X) ∖ {∅} (thus identifying ∅ with the

point at in�nity) {Un ∣ n ∈ N} is a fundamental system of neighborhoods of ∅ in C(X),
where Un ∶= {A ∈ C(X) ∣ A ∩Kn = ∅} for every n ∈ N (cf. [30], Proposition 7.2).

2.3.2 De�nition. The topology introduced above will be called the local Hausdor�

topology (abbreviated LH�topology) on C(X) throughout this thesis.

The pseudometrics dn are sometimes clumsy to work with. Setting

τn(A,B) = max{ sup
x∈A∩Kn

dist(x,B), sup
x∈B∩Kn

dist(x,A)}

and Vn,ε(A) ∶= {B ∈ C(X) ∖ {∅} ∣ τn(A,B) ≤ ε} for A ∈ C(X) ∖ {∅}, it is shown in [30]

that {Vn,ε(A) ∣ n ∈ N, ε > 0} is a fundamental system of neighborhoods of A with respect

to the LH�topology (see [30], Prop. 7.1).

The LH�topology is metrizable as the de�ning family of pseudo�metrics is countable.

To check topological properties via convergence it is therefore su�cient to use sequences

in this case.

In order to simplify the notations, we assume that all locally compact spaces mentioned

are σ�compact and metrizable!

The notion of semi-continuity is also used for set�valued maps as we have seen in the

section before. We here give a topological de�nition. It is not hard to prove that both

de�nitions yield the same.

2.3.3 De�nition. Let (X,dX)and (Y, dY ) be metric spaces, where (Y, dY ) is locally

compact. For every system S of closed subsets in Y let

S− ∶= {A ∈ C(Y ) ∣ ∃C ∈ S ∶ A ⊂ C}

denote the system of all closed subsets of some set C of S. With this notation a func-

tion f ∶ X → C(Y ) is called upper semi-continuous at a point x ∈ E if for every

neighborhood U of the set f(x) there is δ > 0 s.t. f(v) ∈ U−, whenever v ∈ X satis�es

dX(x, v) < δ. The mapping f is upper semi-continuous if it is upper semi-continuous

at every point of X.
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2.3.4 Proposition. If B is a subset of X, the distance function C(X) → [0,+∞],
A ↦ dist(A,B) is upper semi-continuous in the LH�topology. It is continuous if B is

compact.

Proof. See [30], Proposition 2.2.

2.3.5 Theorem. Let A be a metric space, n ∈ N and let X be an open subset of Rm

with m ≥ n. Furthermore, let f ∶ A × X → Rn be continuous s.t. the partial maps

fa(x) = f(a, x) are di�erentiable at every x ∈ f−1a ({0}) for every a ∈ A. If the total

di�erentials Dfa(x) are surjective for every x ∈ f−1a ({0}) and all a ∈ A, the mapping

A→ C(X), a↦ f−1a ({0}) is LH-continuous.

Proof. Follows immediately from [30], Theorem 3.13.

2.3.6 Remark. Since we have K(Y ) ⊂ P(Y ) for any metric space Y , a set-valued

mapping F ∶ X → K(Y ) is continuous with respect to the Hausdor� metric if and only

if F is upper and lower semi-continuous in the sense of De�nition 2.2.1 and 2.2.2.

2.3.7 Remark. If θ is a metric on C(X) induced by the LH-topology, (K(X), θ ∣K(X)) is
a metric space as well. However, in general, the LH-topology and the topology induced

by h are not equal. For instance, the sequence (An)n∈N with An ∶= [−n,n] converges

to R with respect to the LH-topology, but it is not a Cauchy-sequence with respect

to the Hausdor� metric. If a mapping F ∶ X → K(Y ) is continuous with respect to

the Hausdor� metric, it is also continuous with respect to the LH-topology, i.e. the

LH-topology is coarser than the topology given by the Hausdor� metric. (cf. [30])

Nevertheless, if X is compact, we have K(X) = C(X)∖{∅} and the LH-topology as well

as the Hausdor� metric induce the same topology on K(X).
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2.4 Planar Curves

Let us recall in a few pages some elementary notions of the geometry of planar curves,

which we want to use in the following. All de�nitions are given in the plane. Most of

them can be generalized in higher dimensions, but we keep a two-dimensional point of

view, which is su�cient for our issues. Proofs of the presented results and the evidence

that the terms we will introduce are well-de�ned, can be found in [28], [38] or [27].

2.4.1 De�nition. A mapping f ∶ [a, b] → Rn with n ∈ N ∖ {0} is called C 1 if an ε > 0

exists s.t. g ∶]a − ε, b + ε[→ X is continuously di�erentiable and g ∣[a,b]= f . f is said to

be piecewise C 1 if there exists a subdivision a =∶ t0 < t1 < ⋅ ⋅ ⋅ < tn+1 ∶= b s.t. f ∣[tk,tk+1]
is a C 1-mapping for all 0 ≤ k ≤ n. In the same way (piecewise) Cm, m > 1 mappings

f ∶ [a, b] →Rn can be de�ned.

2.4.2 De�nition. We call w ∶ [a, b] →R2 a parametrized curve or parametrization

if it is piecewise C 1.

Note that mostly in literature parametrized curves are understood as continuous or C∞

mappings. But we want to focus on piecewise C 1 mappings. Since we are not interested

in the parametrization w itself but only in the image w([a, b]) and its orientation, we

use an equivalence relation. For this purpose, the following de�nition is useful:

2.4.3 De�nition. A change of parameters is a continuous mapping φ ∶ [a, b] → [c, d],
which is piecewise C 1, surjective and satis�es φ′(s) > 0 aside from �nitely many points.

It can be shown that every change of parameters is a strictly monotonically increasing

homeomorphism and the composition w○φ ∶ [a, b] →R2 is a piecewise C 1 parametrization

if w is piecewise C 1.

Now we are able to introduce an equivalence relation on the set of all parameterizations.

2.4.4 De�nition. Two parametrized curves w1 ∶ [a, b] → R2 and w2 ∶ [c, d] → R2 are

called equivalent if there exists a change of parameters φ ∶ [a, b] → [c, d] with w1 = w2○φ.
The corresponding equivalence classes are called oriented paths or oriented curves.

For the sake of brevity we often simply write path and curve instead of oriented path

and oriented curve. Let us denote the set of all oriented paths by W(R2).
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If ω is a path, the images w1([a, b]) and w2([c, d]) are equal for every two parameteri-

zations w1 ∶ [a, b] →R2 and w2 ∶ [c, d] →R2 in ω.

2.4.5 De�nition. This image set is called trace of ω and is denoted by tr(ω). Likewise,
we have w1(a) = w2(c) and w1(b) = w2(d). Hence we can speak of the starting point

S(ω) and the endpoint E(ω) of ω. If S(ω) = E(ω), ω is said to be closed or a loop.

Paths ω possessing an injective parametrization are said to be simple. A closed curve

is called Jordan curve1 if it has a parametrization w ∶ [a, b] → R2 whose restriction

w ∣[a,b[ is injective.

For any two paths ω1 and ω2 with E(ω1) = S(ω2) there exists a path ω, s.t. for every

two parameterizations w1 ∶ [0,1] → R2 of ω1 and w2 ∶ [1,2] → R2 of ω2 the parametric

curve w ∶ [0,2] →R2 with w ∣[0,1]= w1 and w ∣[1,2]= w2 is a parametrization of ω.

2.4.6 De�nition. In the situation above ω is also called juxtaposition of ω1 and ω2.

Obviously, the juxtaposition yields an associative composition. We use the more un-

common notation ω1⋯ωn for the juxtaposition of the curves ω1, . . . , ωn.

2.4.7 De�nition. For an arbitrary path ω the inverse path ω−1 of ω is de�ned as

follows: Choosing any representative w ∶ [a, b] →R2 of ω, ω−1 is the equivalence class of

w∗ ∶ [a, b] →R2 with w∗(t) = w(b + a − t).

Clearly, we have tr(ω) = tr(ω−1) and (ω−1)−1 = ω.
Identifying C with R2, we can de�ne the winding number since we are only dealing with

piecewise C 1 mappings.

2.4.8 De�nition. Let ω be a Jordan curve and a ∈R2 ∖ tr(ω). The number

w(ω, a) = 1

2π ∫
ω

dz

z − a
.

is then called the winding number of ω.

2.4.9 Theorem (Jordan). Let ω be a Jordan curve and K ∶= tr(ω). Then the open set

R2∖K has two connected components, a bounded one I ⊂R2∖K and an unbounded one

E ⊂ R2 ∖K. For the boundaries of I and E we obtain ∂I = ∂E = K and, additionally,

we get ∀x ∈ E w(ω,x) = 0 and (∀x ∈ I w(ω,x) = 1 or ∀x ∈ I w(ω,x) = −1).

1In literature, a Jordan curve usually does not need to have a piecewise C 1 but only a continuous

parametrization.
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I
E

ω

a

Ttr(ω)(a)

b

Ttr(ω)(b)

c

Ttr(ω)(c)

Figure 6: Illustration of De�nitions 2.4.10 and 2.4.11. The points b and c are smooth points whereas a

is a vertex. The doted lines indicate the corresponding tangent cones.

Proof. cf.[27], Ch. IX, Ap. 4.2.

2.4.10 De�nition. In the situation of Theorem 2.4.9, I is called the interior of ω

and E the exterior of ω. If w(ω,x) = 1 for all x ∈ I, ω is said to be counterclockwise

(CCW) oriented and otherwise clockwise (CW) oriented (cf. Figure 6).

2.4.11 De�nition. Let M be the trace of a curve. A point a ∈ M is called smooth if

TM(a) is a line, i.e. TM(a) =R ⋅ v for some v ∈ S1. Otherwise, a is said to be a vertex.

An example is illustrated in Figure 6.

2.4.12 Remark. Since we have restricted ourselves to piecewise C 1 mappings, the

number of vertices of a curve is obviously �nite.

In order to be able to examine curves in a more detailed manner, we need the term

tangent vector :

2.4.13 De�nition. Let w ∶ [a, b] → R2 be a parametric curve that is C 1 at t ∈ [a, b].
If the tangent vector w′(t) ∈ R2 does not vanish, we can consider the tangent unit

vector w′(t)
∥w′(t)∥ . Since this vector does not depend on the choice of the representative w

of ω, we can set τω(x) ∶= w′(t)
∥w′(t)∥ and call it the tangent unit vector of ω at x ∶= w(t).
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We are able to de�ne a (strict) total order on the traces of simple paths, since we have

built the equivalence classes order-preservingly.

2.4.14 De�nition. Let ω be a simple path. Then the [strict] total order ⪯ω [≺ω] is given
as follows:

∀x1, x2 ∈ tr(ω) ∶ x1 ⪯ω x2 [x1 ≺ω x2] ∶⇔ t1 ≤ t2 [t1 < t2],

where w ∶ [a, b] → R2 is an arbitrary parametrization of ω and ti ∈ [a, b] are the unique

parameters with w(ti) = xi, i = 1,2.

In this situation we set additionally:

[x1, x2]ω ∶= {w(t) ∈ tr(ω) ∣ t ∈ [t1, t2]} .

If there is no ambiguity, we simply write [x1, x2].
We denote the curve that corresponds to the parametrization w ∣[t1,t2] by ω ∣[x1,x2].

We also need to introduce the length of a curve, which is introduced in the following

de�nition.

2.4.15 De�nition. Let ω be an oriented path.

1) Choosing an arbitrary parametrization w ∶ [a, b] →R2, the length of ω is de�ned as

follows: len(ω) ∶=
b

∫
a
∥w′(t)∥dt.

2) If there exists a parametrization with w′(t) ≠ 0 for all t ∈ [a, b], we call ω regular.

It is easy to show that these terms are really well-de�ned.

2.4.16 De�nition. Let ω be a regular curve. A parametrization w ∈ ω is called arc

length parametrization of ω if ∥w′(t)∥ = 1 for all t. In this case we also call w

normal.

2.4.17 Lemma. Every regular curve ω possesses an arc length parametrization.

Proof. See e.g. [28] or [38].

2.4.18 Lemma. Let w ∶ [a, b] → R2 be an arc length parametrization of a curve ω. Let

w be piecewise C 2. Then we obtain ⟨w′(t)∣w′′(t)⟩ = 0 for all t ∈ [a, b] except for a �nite

number of points.

Proof. Follows immediately from the equation ⟨w′(t)∣w′(t)⟩ = 1 and the chain rule.
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2.4.19 De�nition. Let w ∶ [a, b] → R2 be an arc length parametrization of a curve ω

that is C 2. Identifying C with R2 and denoting the imaginary unit by i, there exists a

function κ ∶ [a, b] →R s.t. w′′(t) = κ(t)⋅i ⋅w′(t) which is called curvature. The normal

is de�ned by n(t) ∶= i ⋅w′(t).

Let x ∶= w(t) ∈ tr(ω) for some t ∈ [a, b] with w C 2 at t. In this case, we say that ω has

curvature κ(t) at x.

2.4.20 Remark. By de�nition (w′(t), n(t)) is an orthonormal base ofR2. We also speak

of curvature and the normal in case of piecewise C 2 curves, although these functions are

only de�ned except for �nitely many points.

2.4.21 Remark. Let ω be piecewise C 2 and w ∶ [a, b] →R2 a parametrization of ω. For

every smooth point a ∈ tr(ω) with non-vanishing curvature, there exist a neighborhood U
of a and a linear mapping l ∶ R2 → R s.t. l−1({0}) = Ttr(ω)(a) and l(x) ≥ 0 for all

x ∈ U ∩ tr(ω).

Next, we focus on another class of curves that has somewhat `nice' properties. This

class will be very useful for the mathematic modeling in Chapter 3.

2.4.22 De�nition. An oriented curve ω is called analytic (C ω) if it has a parametriza-

tion w ∶ I → R2,w(t) ∶= (w1(t),w2(t))T s.t. for every t0 ∈ I there are real coe�cients

an, bn, and power series
∞

∑
n=0

an(t− t0)n and
∞

∑
n=0

bn(t− t0)n, which are convergent to w1 and

w2 respectively in a neighborhood of t0.

If ω has a parametrization w ∶ [a, b] →R2 with an analytic extension w̃ ∶]a−ε, b+ε[→R2,

i.e. w̃ ∣[a,b]= w, for some ε > 0, the curve ω is said to be restricted analytic (Rω).

2.4.23 De�nition. The juxtaposition ω ∶= ω1⋯ωn of �nitely many restricted analytic

curves is called piecewise restricted analytic or piecewise Rω.

We need some important properties of regions bounded by piecewise restricted analytic

curves in order to enable a well-arranged formulation of our mathematical modeling in

Chapter 3.
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2.4.24 Proposition. Let ω be a piecewise Rω Jordan curve with interior I. For every

x, y ∈ I there exists a piecewise Rω curve γ of �nite length starting at x and ending in

y with tr(γ) ∩ tr(ω) ⊂ {x, y} and tr(γ) ⊂ I.

Proof. By the Curve Selection Lemma ([76], Corollary 1.5) and by [75], p. 192 there are

restricted analytic functions w1 and w2 with w1(0) = x, w2(0) = y and w1(t),w2(t) ∈ I
for all t > 0. Then Theorem 6.10 in [13] yields the existence of a curve of �nite length

joining w1(1) and w2(1) in I and therefore of one joining x and y with the desired

properties.

2.4.25 Proposition. Let γ1 and γ2 be two piecewise Rω curves. Then there exist a

�nite set E, a set J and a n ∈ N s.t. tr(γ1) ∩ tr(γ2) = E ∪ J and J is homeomorphic to

n intervals in R.

Proof. The set tr(γ1) ∩ tr(γ2) is a bounded semi-analytic set1. By [75], p. 192 and [13],

Corollary 2.7, every bounded semi-analytic set has �nitely many components which are

points or homeomorphic to an interval, thus concluding the proof.

1A de�nition can be found in [13, 75].
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2.5 Arc Splines and their Properties

Now we are able to give an exact de�nition of circular arc splines:

2.5.1 De�nition. A path γ ∈ W(R2) is called (circular) arc spline if

i) γ is a simple curve or a Jordan curve and

ii) there exists a �nite family (Ai)1≤i≤n of generalized arcs with tr(γ) =
n

⋃
i=1
Ai.

Such sequences (Ai)1≤i≤n are called de�ning sequences of γ. The minimal possible

number n ∈N s.t. there exists a de�ning sequence (Ai)1≤i≤n is called segment number

of γ. We use the abbreviation ∣γ∣ ∶= n. Arc splines γ with ∣γ∣ = 1 are also called

(oriented) arcs.

2.5.2 Proposition. Let γ be an arc spline with ∣γ∣ = n. Then every de�ning sequence

(Ai)1≤i≤n of γ satis�es: card (Ai ∩Aj) ≤ 1 for all i ≠ j.

Proof. Follows immediately from Lemma 2.1.5 and the minimality of n.

Therefore, there always exists a unique representation γ = γ1⋯γn with oriented arcs γi.

Throughout this thesis we simply write γ = γ1⋯γn for an arc spline with ∣γ∣ = n and do

not explicitly mention that the unique representation introduced above is meant.

2.5.3 De�nition. Let γ = γ1⋯γn be an arc spline with breakpoints a1 ≺ ⋅ ⋅ ⋅ ≺ an−1.

If τγi(ai) = τγi+1(ai) is satis�ed for all i = 1, . . . , n, the arc γ is said to be smooth.

Additionally, τγn(E(γ)) = τγ1(S(γ)) is required if γ is closed, i.e. S(γ) = E(γ). The

direction τγ(E(γ)) ∈ S1 is called the exiting direction of γ.

We denote the set of all smooth arc splines with segment number n ∈N by Sn, and use

the abbreviations: S ∶=S1 and S∞ ∶= ⋃
n∈N

Sn.

Biarcs are smooth arc splines with two segments.

An illustration can be found in Figure 7.

2.5.4 Remark. Many authors refer to the smoothness condition in De�nition 2.5.3

as G1-continuity (e.g. [65]). It is clear that this is equivalent to requiring a regular

C 1-parametrization.

2.5.5 De�nition. We denote the corresponding generalized circle for an arbitrary ori-

ented arc by C(γ) ⊂R2.
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Figure 7: Illustration of De�nition 2.5.1 and 2.5.3. Top left: Smooth arc spline with six segments. Top

right: Arc spline with six segments that is not smooth. Bottom left: Non-smooth arc spline. Bottom

right: No arc spline since the curve is not simple and not a Jordan curve.

2.5.6 Remark. Although a point is a generalized arc since it is a non-empty, connected

and compact subset of a generalized circle, there is no oriented arc whose trace is a

point.

2.5.7 De�nition. The oriented arcs γi of an arc spline γ1⋯γn ∈Sn are called segments.

In the same manner as arc splines we can de�ne polygonal curves, which simply consist

of line segments but not generalized arcs:

2.5.8 De�nition. A curve ω ∈R is called polygonal curve if it can be represented by

ω ∶= ω1⋯ωn with oriented line segments ωi, i.e. tr(ωi) is a line segment. In this case

we can refer to segments as well. A polygon is a polygonal Jordan curve.

In some cases, we will also need a parametric form of arc splines. Before we give a closed

form of such a parametrization, we introduce some more notation:

2.5.9 De�nition. Let D ∶= {(a, b, v) ∈R2 ×R2 × S1 ∣ a ≠ b, v ≠ a−b
∥a−b∥}. Given an element

(a, b, v) ∈D, we denote the uniquely determined oriented arc starting at a and ending at

b with exiting direction v by γa,b,v.
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2.5.10 De�nition. For any complex number z ∈ C ∖ {0} the argument is set to:

arg(z) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π
2 − arctan (R(z)

I(z) ) , I(z) > 0

0 , I(z) = 0,R(z) > 0

π , I(z) = 0,R(z) < 0

−π2 − arctan (R(z)
I(z) ) , I(z) < 0

,

where R(z) and I(z) denote the real and the imaginary part of z.

The function is continuous on C∖]−∞,0] and we have z = ∣z∣ ⋅ eiarg(z) for all z ∈ C∖{0}
(cf. [37]). Let a, b ∈ R2 be two distinct points and v ∈ S1 with v ≠ − b−a

∥b−a∥ . Identifying

R2 ≅ C and setting

σ ∶= det(b − a, v) and τ ∶= ⟨v∣b − a⟩ ,

we can give a parametrization of γa,b,v in a closed form: It can be shown that r ∶= − ∥b−a∥2

2σ

and c ∶= b + r ⋅ iv are the corresponding radius and center of γa,b,v if γa,b,v is not a line

segment.

2.5.11 De�nition. With the notion introduced above, we can de�ne the opening angle.

For any (a, b, v) ∈D satisfying v ≠ b−a
∥b−a∥ we set:

κ(a, b, v) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

sgn(σ) ⋅ κ0(a, b, v) , τ > 0

sgn(σ) ⋅ π , τ = 0

sgn(σ) ⋅ ∣2π − κ0(a, b, v)∣ , τ < 0

where κ0(a, b, v) ∶= ∣arg(b − c) − arg(a − c)∣ with c de�ned above, and introduce the map-

ping

f ∶D × [0,1] →R2, f((a, b, v), t) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a + (b − a)
eiκ(a,b,v)⋅t − 1

eiκ(a,b,v) − 1
, v ≠

b − a
∥b − a∥

a + (b − a) ⋅ t , v =
b − a

∥b − a∥
2.5.12 Remark. It is easy to verify that the mapping fa,b,v ∶ [0,1] →R2, t↦ f((a, b, v), t)
is a parametrization of the circular arc γa,b,v. Figure 8 shows an illustration of such an

arc.

2.5.13 Remark. It is not hard to prove that κ(a, b, v) ∈] − 2π,2π[. If v = b−a
∥b−a∥ , we

parametrize the line segment between a and b. Otherwise, we have κ(a, b, v) ≠ 0 and

f(a, b, v, t) = b − a
eiκ(a,b,v) − 1

⋅ eiκ(a,b,v)⋅t + a − b − a
eiκ(a,b,v) − 1
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γa,b,v

a

b

vc

κ(a, b, v)

Figure 8: Visualization of the arc γa,b,v.

for all t ∈ [0,1]. We can also compute the center and the radius in other terms:

c = a − b − a
eiκ(a,b,v) − 1

and r = ∣ b − a
eiκ(a,b,v) − 1

∣ .

Note that for every radius r > 1
2 ∣b − a∣ there exist four di�erent circular arcs with radius

r from a to b (see Figure 9).

2.5.14 Lemma. The mapping f ∶D × [0,1] →R2 in De�nition 2.5.11 is continuous.

Proof. Extending κ to the domain D when setting κ(a, b, b−a
∥b−a∥) ∶= 0, we �rst show that

κ ∶ D →] − 2π,2π[ is continuous. Since κ0(a, b, v) = ∣2π − κ0(a, b, v)∣ = π for τ = 0, it

remains to show that κ is continuous at va,b ∶= b−a
∥b−a∥ . In this case, we have

lim
v→va,b

v∈S1∖{va,b}

κ0(a, b, v) = 0

and τ > 0. Therefore, κ is continuous at va,b. Setting ∆ ∶= {(a, b) ∈R2 ∣ a = b}, the
mapping

g ∶ ((R2 ×R2) ∖∆)×] − 2π,2π[×[0,1] →R2, g((a, b, ρ), t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

a + (b − a) eiρt−1
eiρ−1

, ρ ≠ 0

a + (b − a) ⋅ t , ρ = 0

is also continuous since we obtain by L'Hospital's rule:

lim
ρ→0

a + (b − a)e
iρt − 1

eiρ − 1
= a + lim

ρ→0
(b − a)e

iρt − 1

eiρ − 1
= a + lim

ρ→0
(b − a)e

iρtit

eiρi
= a + (b − a)t.

Therefore, f = g ○ κ is continuous as well.
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Figure 9: Illustration of all circular arcs from a to b with the same radius.

2.5.15 De�nition. For any (a, b, v) ∈D and ξ ∈R2 we de�ne

Aa,b,v(ξ) ∶=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

a21 + a22 a1 a2 1

b21 + b22 b1 b2 1

2(b1v1 + b2v2) v1 v2 0

ξ21 + ξ22 ξ1 ξ2 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∈R4×4.

Furthermore, we de�ne the mapping

h ∶D ×R2 →R, h ((a, b, v), ξ) ∶= det (Aa,b,v(ξ))

and for �xed (a, b, v) ∈D

ha,b,v ∶R2 →R, ha,b,v(ξ) ∶= h((a, b, v), ξ).

Using the notation of Remark 2.1.2, we obtain

Aa,b,v(ξ) =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

q0(a) ⋯ q3(a)
q0(b) ⋯ q3(b)

⟨v∣q0(b)⟩ ⋯ ⟨v∣q3(b)⟩
q0(ξ) ⋯ q3(ξ)

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

.

2.5.16 De�nition. The mapping A ∶ D → K(R2), A(a, b, v) ∶= tr(γa,b,v) assigns the

trace of the oriented arc γa,b,v to every triple (a, b, v). The mapping that yields the

corresponding generalized circles can be de�ned as follows:

C ∶D → K(R2), C(a, b, v) ∶= h−1a,b,v({0}),

where ha,b,v is de�ned in De�nition 2.5.15.
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2.5.17 Lemma. The mapping C de�ned in De�nition 2.5.16 is continuous with respect

to the LH-Topology.

Proof. Obviously, h ∶ D ×R2 → R is continuous. Let (a, b, v) ∈ D and ξ ∈ h−1a,b,v({0}).
Then ha,b,v is di�erentiable at ξ and it is not to hard prove that Dha,b,v(ξ) is surjective.
Using Theorem 2.3.5 completes the proof. A more detailed proof can be found in [30].

2.5.18 Lemma. The mapping A de�ned in De�nition 2.5.16 is continuous with respect

to the Hausdor� metric.

Proof. We have tr(γa,b,v) = f(a, b, v, [0,1]), where f is the mapping de�ned in 2.5.11. Let

ε > 0, θ0 ∈ D and ρ > 0 s.t. K ∶= {θ ∈R2 ×R2 × S1 ∣ ∥θ − θ0∥ ≤ ρ} ⊂ D. By Lemma 2.5.14,

f is continuous. Since K × [0,1] is compact, f is uniformly continuous on K × [0,1].
Thus, there exists a δ > 0 s.t. for all ξ, η ∈K × [0,1] the implication

∥ξ − η∥ < δ⇒ ∥f(ξ) − f(η)∥ < ε

holds. Then, for any φ0 ∈ D with ∥φ0 − θ0∥ < min(ρ, δ) and for all t ∈ [0,1], we have

∥f(ξ, t) − f(η, t)∥ < ε. Therefore, we obtain

sup
x∈f(θ0,[0,1])

dist(x, f(φ0, [0,1])) < ε and sup
x∈f(φ0,[0,1])

dist(x, f(θ0, [0,1])) < ε,

which means h(f(θ0, [0,1]), f(φ0, [0,1])) = h(A(θ0),A(φ0)) < ε. Hence A is continuous.

2.5.19 Lemma. If Cp̂ is a generalized circle given by a polynomial p and

D0 ∶= {(a, b, v) ∈D ∣ 1 ≤ card (C(a, b, v) ∩Cp̂) ≤ 2} ,

then the mapping

D0 → C(R2), (a, b, v) ↦ g−1a,b,v({0})

is LH-continuous, where g is de�ned as follows:

g ∶D0 ×R2 →R2, g ((a, b, v), ξ) ∶=
⎛
⎜
⎝

h ((a, b, v), ξ)
p(ξ)

⎞
⎟
⎠
.

Proof. Clearly, g is continuous and ga,b,v is di�erentiable for all (a, b, v) ∈D0. Similar to

the proof of Lemma 2.5.17, we can show the continuity of the mapping de�ned above

by using Theorem 2.3.5.
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Figure 10: Convergent sequence (An)n∈N in tr(S3) with An ∶= tr(γ
(n)
1 γ

(n)
2 γ

(n)
3 ). On the right the limit

set of the sequence is indicated. While every An is the trace of a smooth arc spline, the limit is the

trace of a non-smooth arc spline where the second segment collapsed to a point.

Next, we concern ourselves to the set of arc splines with more than one segment and

work out important properties.

2.5.20 De�nition. Let n ∈N ∖ {0}. For every subset M of Sn the set

tr(M) ∶= {tr(γ) ∈ K(R2) ∣ γ ∈M}

is called the trace of M.

2.5.21 Remark. Attention: The set tr(Sn) is not closed with respect to the Hausdor�-
metric, as indicated in Figure 10.

In fact, it is not hard to show that tr(S∞) is the set of all compact, connected sub-

sets of R2 that are a �nite union of generalized arcs. These sets are also called arc

conglomerates.

2.5.22 De�nition. Let γ be an arbitrary arc spline. The set V (γ) of all non-smooth

points of γ is called the vertex set of γ. Denoting the set of all (not necessarily smooth)

arc splines by T, we set for all n ∈N ∖ {0}:

Sn ∶= {γ ∈ T ∣ ∣γ∣ + card (V (γ)) ≤ n} .
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Figure 11: Convergent sequence in tr(S7) whose limit point is not the trace of an arc spline.

Note that we didn't endow Sn with any topology. Thus, Sn does not mean the closure

of Sn with respect to a topology on T. Moreover, we can state the following properties:

2.5.23 Remark. Obviously, we have S = S and it is not hard to see the set inclusion

Sn ⫋Sn for all n > 1. As indicated in Figure 11, there are sequences in tr(Sn) converging
to an arc conglomerate which cannot be represented as an arc spline, and therefore we

have tr(Sn) ⫋ tr(Sn).
However, since every γ ∈ Sn is an arc spline, we can always choose the uniquely deter-

mined, minimal representation γ = γ1⋯γm with m = ∣γ∣ ≤ n − card (V (γ)).

2.5.24 Remark. The following propositions are easy to see (proofs can be found in [57],

Theorem 1-2-2):

i) Suppose that (An)n∈N is a sequence in K(R2) converging to A ∈ K(R2) with respect
to the Hausdor� metric. Then for every a ∈ A there exists a sequence of points

(an)n∈N with an ∈ An convergent to a.

ii) Let n ∈ N. For every i ∈ {1, . . . , n} let (Ai,m)m∈N be a convergent sequence in

K(R2). Setting Ai ∶= lim
m→∞

Ai,m for i = 1, . . . , n, we obtain: lim
m→∞

n

⋃
i=1
Ai,m =

n

⋃
i=1
Ai

With these propositions we are able to show the following lemma, which can also be

found in [57] (Corollary on page 22).

2.5.25 Lemma. The set Z of all non-empty, compact and connected subsets of R2 is a

closed subset of K(R2) with respect to the Hausdor� metric.

Proof. Let (Zn)n∈N be a sequence in Z that converges to an arbitrary Z ∈ K(R2). Then
we have to show that Z is connected. For this purpose, we suppose to the contrary Z /∈ Z.
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Clearly, there exists a connected and compact set L ⊂ R2 with Z ⊂ L○ and therefore a

bound N ∈ N s.t. Zn is included in L for all n ≥ N . Since Z is not connected, we can

choose two disjoint open sets U1 and U2 with U1 ∩ Z ≠ ∅ ≠ U2 ∩ Z covering Z. Then

the set L ∖ (U1 ∪ U2) is not empty and compact. Furthermore, there exists a number

M ∈ N s.t. Zn ⊂ U1 ∪ U2 for all n ≥ M . Otherwise, we could choose a subsequence

(Zni)i∈N with Zni ∩ (L ∖ (U1 ∪U2)) ≠ ∅ and hence Z ∩ (L ∖ (U1 ∪U2)) ≠ ∅, which would

be a contradiction to Z ⊂ U1 ∪ U2. Altogether, we obtain for a su�ciently large n ∈ N:
U1 ∩Zn ≠ ∅ ≠ U2 ∩Zn since U1 ∩Z ≠ ∅ ≠ U2 ∩Z. But this contradicts the fact that Zn is

connected and proves the claim.

2.5.26 Lemma. The set of all generalized arcs in R2 is a closed subset of K(R2).

Proof. Let (Sn)n∈N be a sequence of generalized arcs which is convergent to S ∈ K(R2).
By Lemma 2.5.25, we have S ∈ Z since tr(S) is a subset of Z. It is therefore su�cient

to show that S is the subset of a generalized circle. W.l.o.g. we can suppose S not

to be a singleton. Since S is connected, it contains an in�nite number of points. We

will now show that every quadruple of distinct points (a(0), a(1), a(2), a(3)) on S lies on a

generalized circle. Since (Sn)n∈N converges to S with respect to the Hausdor� metric, we

have sequences (a(i)n )n∈N of points a
(i)
n ∈ Sn convergent to a(i) for all i ∈ {0,1,2,3}. Due

to the fact that all arcs Sn have corresponding circles Cn containing them, we obtain by

Lemma 2.1.5:

det

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

q0(a(0)n ) q1(a(0)n ) q2(a(0)n ) 1

q0(a(1)n ) q1(a(1)n ) q2(a(1)n ) 1

q0(a(2)n ) q1(a(2)n ) q2(a(2)n ) 1

q0(a(3)n ) q1(a(3)n ) q2(a(3)n ) 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 0

with q0(ξ1, ξ2) = ξ21 + ξ22 , q1(ξ1, ξ2) = ξ and q2(ξ1, ξ2) = ξ2. Since the determinant mapping

is continuous regarding the matrix entries, we have

det

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

q0(a(0)) q1(a(0)) q2(a(0)) 1

q0(a(1)) q1(a(1)) q2(a(1)) 1

q0(a(2)) q1(a(2)) q2(a(2)) 1

q0(a(3)) q1(a(3)) q2(a(3)) 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= lim
n→∞

det

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

q0(a(0)n ) q1(a(0)n ) q2(a(0)n ) 1

q0(a(1)n ) q1(a(1)n ) q2(a(1)n ) 1

q0(a(2)n ) q1(a(2)n ) q2(a(2)n ) 1

q0(a(3)n ) q1(a(3)n ) q2(a(3)n ) 1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

= 0.

Hence the points a(0), a(1), a(2), a(3) lie on a generalized circle C, and S is contained in

C. Let now x ≠ ai for all i = 0,1,2 be an arbitrary point of S. Then there exists a
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generalized circle C2 including x1, a0, a1 and a2. But by Lemma 2.1.5, we obtain C = C2.

Since x ∈ S was chosen arbitrarily, this proves the assertion.

From that we can easily deduce:

2.5.27 Corollary. The set of all generalized arcs in R2 is equal to tr(S), and we have

the equation of sets S2 =S ∪S2.

As already indicated in Chapter 1, arc splines satisfy important invariance criteria,

namely:

2.5.28 Proposition. Circular arc splines are invariant with respect to rotations, scal-

ings and translations, i.e. λeiφ ⋅ tr(γ) + t is the trace of a (smooth) arc spline for any

(smooth) arc spline γ ∈Sn, rotation angle φ ∈ [0,2π], scalar λ > 0 and translation vector

t ∈R2 ≅ C.

Proof. W.l.o.g. we can assume γ ∈ S with starting point a, end point b and exiting

direction v ∈ S1. Then γ can be parametrized by

ga,b,v(t) ∶= a + (b − a)
eiκ(a,b,v)⋅t − 1

eiκ(a,b,v) − 1
.

Setting A(x) ∶= λeiφ ⋅ x + t, it can be easily veri�ed that

A(ga,b,v(t)) = A(a) + (A(b) −A(a))
eiκ(a,b,v)⋅t − 1

eiκ(a,b,v) − 1

and κ(a, b, v) = κ(A(a),A(b),A(v)). Hence we have A(ga,b,v(t)) = gA(a),A(b),A(v)(t),
which concludes the proof.

We now present further properties of arc splines without proof since they are well-known.

Nevertheless, they are particularly important for our applications outlined in Chapter 5.

2.5.29 De�nition. Let M ⊂ R2 be compact and ε > 0. The ε-o�set of M is de�ned

as follows: Mε ∶= {a ∈R2 ∣ dist(a,M) = ε} . If ω is a curve with regular parametrization

w ∶ [0,1] → R2 and normal n(t), the ε-parallel curve of ω is the curve given by

wε(t) ∶= w(t) + εn(t).

2.5.30 Remark. For su�ciently small ε > 0 the ε-o�set of the trace of an arc spline is

the trace of an arc spline as well. Likewise, the ε-parallel curve of an arc spline is an

arc spline.
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γ

x1

x2

x0
τγ(x0)

Figure 12: Visualization of Proposition 2.5.33.

The claims above are satis�ed for all ε < min{r1 . . . , rn}, where ri denotes the radius

of the segment γi corresponding to the considered arc spline γ = γ1⋯γn ∈ T, where the
radius of a line segment is set to `∞'.

2.5.31 Proposition. The curvature of an oriented arc is ±1/r when r denotes the radius
of the corresponding circle or vanishes if its trace is a line segment. A regular curve is

an arc spline if and only if its curvature is a step function.

2.5.32 De�nition. Since the curvature of an oriented arc γ ∈S is a constant function,

we can identify it with its value and denote it by κ(γ) ∈R.

The following proposition is easy to see as well:

2.5.33 Proposition. Let γ be an oriented arc with arc length parametrization w ∶ I →R2

and t1, t2 ∈ I with t1 < t2. Setting t0 ∶=
t2 − t1

2
∈ I and xi ∶= w(ti) for i ∈ {0,1,2}, we

obtain: τγ(x0) = w′(t0) =
x2 − x1

∥x2 − x1∥
(cf. Figure 12).
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3
MATHEMATICAL MODELING

AND RESULTS

One method of modeling the application outlined in Chapter 1 is given in this chapter.

Additionally, we give some useful terms and de�nitions and specify solutions mathemat-

ically in order to enable an e�cient algorithmic approach. For this purpose, we stick to

practice as closely as required.

In general, we characterize the set of points that can be reached by a (smooth) circular

arc spline with n segments (n ∈ N ∖ {0}) starting from a given generalized arc or point

tr(s) and staying inside a so called tolerance channel. This set is called the circular n-

visibility set. We introduce this term in Section 3.1 and show that common boundaries

like polygons (example in Figure 13) and arc splines used in classical visibility problems

are just examples of this abstract term.

In order to give an e�cient mathematical characterization of the circular n-visibility sets,

alternating sequences (Section 3.2) and feasible direction sets (Section 3.3) are de�ned

and various properties are examined. With the aid of these two notions, we specify the

set of all circularly visible points inside a tolerance channel (Section 3.4).

`As far as the laws of mathematics refer to reality,

they are not certain; and as far as they are certain,

they do not refer to reality.'

(Albert Einstein, German physicist)
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s

Figure 13: Simple polygon K, a circular arc s (solid curve). The shaded portion of IK is not circularly

visible from s.

The general approach is to investigate the set of visibility arcs for a �xed end point

and exiting direction �rst. In a subsequent step we examine how this set acts when

the exiting directions and then consequently also the endpoints are varied. For this

characterization we use the terminology of alternating sequences.

Feasible direction sets of a point a are those sets built by all exiting directions corre-

sponding to visibility arcs ending in a. Since they feature certain continuity properties,

which is shown in Section 3.5, we are able to give an equivalent condition (Section 3.6)

for an oriented arc smoothly joined to a visibility arc. The characterization of the set of

all n-visible points follows by induction. The abstract formulation of tolerance channels

a�ords using the results of Section 3.4 for the examination of the n-visibility sets.

In Section 3.7, we work out characterizations of (smooth) minimum arc paths. We

present an approach for the computation of a solution based on alternating sequences.

Since we can again proceed inductively, this leads to a constructive, iterative procedure,

which will result in a greedy algorithm (cf. Chapter 4).

In the last section (3.8) we brie�y summarize the main results and draw a comparison

to the well-studied linear visibility and minimum link paths. In addition, we give an

outlook to `cyclic' tolerance channels and '(smooth) cyclic minimum arc paths'.
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3.1 Tolerance Channels

In literature minimum link paths (e.g.[73]) and visibility problems ([9, 7, 23, 22, 4]) are

treated within the scope of polygons and splinegons (cf. [39]). In order to formulate

the problem we are interested in, we introduce a new term which is more general and

abstract, including polygons, arc splines and splinegons. Tolerance Channels enable

a well-arranged presentation of our results and a uni�ed approach to all the visibility

problems presented in Chapter 1 within a more general scope. The abstract formulation

is especially useful to describe the set of points inside the channel that can be reached by

a smooth arc spline with more than one segment starting from a designated generalized

arc. It seems quite intuitive that a tolerance channel should consist of

� a simply connected region bounded by a `well-behaving' Jordan curve,

� a starting segment given by an oriented arc or point the visibility arcs have to

start from.

We have already seen an example in Figure 13. Another one is depicted in Figure 14.

Before we address ourselves to de�ning tolerance channels, we introduce the term chan-

nel, which is just used as an auxiliary notion to de�ne further re�nements.

3.1.1 De�nition. A pair (K,s) consisting of

i) a compact set K ⊂R2 that is the trace of a piecewise Rω Jordan curve with interior

IK and exterior EK,

ii) a path s whose trace is a generalized arc included in IK with S(s),E(s) ∈ K and

(TIK(x))○ ≠ ∅ for all x ∈ tr(s), where TIK(x) denotes the tangent cone to IK at x,

is called a channel. In this case, we denote the uniquely determined path which is CCW

oriented and starts at S(s) with K = tr(ωK) by ωK.

The requirement that the interior of TIK(x) is not empty for all x ∈ tr(s) means that we

have a positive `angle' at all points of tr(s) and therefore there exists an oriented arc

starting from s into IK .

We want to use the concept of tolerance channels for examining both the 1-visibility

and the n-visibility for any n > 1. We will show that this can be done by iteratively

investigating special types of tolerance channels. However, these tolerance channels

require more complicated starting conditions of their feasible arcs. In general, it is not



48 3.1. Tolerance Channels

s

IK

EK

S(s)

E(s)

K = tr(ωK)

Figure 14: Illustration of a channel (K,s).

enough to just start from tr(s). We will see that it can be reasonable to reject the

feasibility of an arc although it has its starting point on tr(s) and stays inside IK .

For this purpose, we additionally take a set-valued mapping σ ∶ F → K(tr(s)) with a

non-empty subset F of R2 ×S1 into account. The mapping σ models restrictions on the

feasible starting points. In fact, σ assigns the set of all feasible starting points of the

corresponding visibility arcs to every potential end point and exiting direction. For an

arbitrary �xed endpoint a and exiting direction v ∈ S1 the corresponding visibility arcs

are uniquely determined by their starting points x ∈ σ(a, v).

We want to focus on set-valued maps σ which assure some sort of maximality of their

de�nition sets and have `nice' properties:

3.1.2 De�nition. Let s be a path of a generalized arc tr(s) and let F ≠ ∅ be a subset of

G ∶= {(a, v) ∈ (R2 ∖ tr(s)) × S1 ∣ ∃x ∈ tr(s) ∶ (x, a, v) ∈D} with D from De�nition 2.5.9.

A mapping σ ∶ F → K(tr(s)) is called restriction map (of s) if the following is

satis�ed:

i) The set F ⊂ G is closed with respect to the relative topology on G.

ii) σ is continuous with respect to the Hausdor� metric.

iii) If (a, v) ∈ F and x ∈ σ(a, v), then (x, a, v) ∈ D and for all b ∈ tr(γx,a,v) ∖ tr(s) there

exists a direction w ∈ S1 with (b,w) ∈ F .
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iv) σ(a, v) has at most two connected components for every (a, v) ∈ F .

In general, we cannot extend F to R2 ×S1 since otherwise σ might have the value of the

empty set and would be not well-de�ned. Before we introduce more useful and important

notation, in De�nitions 3.1.3, 3.1.4 and 3.1.5 we give some examples of restriction maps

that will play an important role when examining the circular visibility sets.

3.1.3 De�nition. Let s be a path whose trace is a generalized arc. For any pair

(a, v) ∈R2 × S1 we set

σ(a, v) ∶= {x ∈ tr(s) ∣ ∃γ ∈S ∶ S(γ) = x, E(γ) = a, τγ(a) = v, card (tr(s) ∩ tr(γ)) = 1}

and F ∶= {(a, v) ∈R2 × S1) ∣ σ(a, v) ≠ ∅}, and call the mapping

σ ∶ F → K(tr(s)), (a, v) ↦ σ(a, v)

starting restriction. If tr(s) is a point, σ is said to be degenerate.

An example is depicted in Figure 15 on the left.

It is not hard to prove that the mapping de�ned above is well-de�ned and satis�es

the requirements of a restriction map: E.g. the continuity can be easily deduced from

Lemma 2.5.19 and Remark 2.3.7, and property i) can be seen as follows: Clearly, F is

a subset of G, and for every sequence (an, vn)n∈N in F converging to some (a, v) ∈ G,
one can choose a convergent sequence (xn)n∈N in tr(s) with xn ∈ σ(a, v) for all n ∈ N.
Then the corresponding limit point x is included in tr(s) and hence we get x ∈ σ(a, v),
as there exists an arc starting at x and ending in a with exiting direction v. Therefore,

(a, v) ∈ F and it follows that F is closed in G. Property iii) and iv) are easy to see.

Obviously, this sort of restriction map is needed in the very �rst step when computing

the circular visibility with respect to s. The intersection tr(s)∩ tr(γ) is required to be a

singleton and seems unnatural, but this way we can guarantee for every (a, v) ∈ F and

x, y ∈ σ(a, v):
C(γx,a,v) = C(γy,a,v) ⇔ x = y.

The other special types of restriction maps we introduce will be important for the

characterization of the sets containing the points that can be reached by arc splines

with more than one segment. As already mentioned, we will see that we can proceed

iteratively. In Section 3.6 we show that oriented arcs satisfying the following starting
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condition given by σ can be joined smoothly to a visibility spline starting from the

primary starting segment. The properties which these di�erent types of restriction maps

have in common are su�cient to prove all the results needed for exploiting the n-circular

visibility sets for every n ∈ N ∖ {0}. Hence we introduce this further type although, at
the moment, it is not yet clear why using the word 'continuation' is justi�ed.

3.1.4 De�nition. Let s be an oriented arc. For any (a, v) ∈R2 × S1 we set

σ(a, v) ∶= {x ∈ tr(s) ∣ ∃γ ∈S ∶ S(γ) = x, E(γ) = a, τγ(a) = v, τγ(S(γ)) = τs(S(γ))} .

Setting F ∶= {(a, v) ∈R2 × S1 ∣ σ(a, v) ≠ ∅}, the mapping σ ∶ F → K(tr(s)) is called de-

generate unidirectional restriction. An arc γ ∈ S with E(γ) = a, τγ(a) = v and

S(γ) ∈ σ(a, v) for some (a, v) ∈ F is said to satisfy the degenerate continuation

condition (DCC) (cf. Figure 15 bottom right).

Obviously, arcs satisfying the DCC can be smoothly joined to an arc γ with C(γ) = C(s).
However, there is a more general starting condition including the DCC that enables

arcs to be joined smoothly (see Section 3.6). Hence it makes sense to use the word

`continuation'.

3.1.5 De�nition. Let s be an oriented arc. An arc γ ∈ S is said to satisfy the con-

tinuation condition (CC) if either γ satis�es the DCC or tr(γ) ∩ tr(s) = {x1, x2} for

some x1, x2 ∈R2 and x1 ≺s x2, x1 ≺γ x2. For any (a, v) ∈R2 × S1 we set.

σ(a, v) ∶= {x ∈ tr(s) ∣ ∃γ ∈S S(γ) = x, E(γ) = a, τγ(a) = v satisfying the CC} .

and F ∶= {(a, v) ∈R2 × S1 ∣ σ(a, v) ≠ ∅}. Then, we call the mapping σ ∶ F → K(tr(s))
unidirectional restriction.

An exemplary situation is visualized in Figure 15, top right.

Again, it is not hard to prove that the mappings de�ned in De�nitions 3.1.4 and 3.1.5

are restriction maps. The continuity of σ can be also deduced from Lemma 2.5.19, when

possibly restricting the domain D0, and the properties i), iii) and iv) can be seen in

the same manner as in case of a starting restriction.

It is important to demand the arcs satisfying the CC to have two intersections with tr(s)
compared to the starting restriction de�ned in De�nition 3.1.3. I.e. for the starting point

x of a feasible arc γ ∈ S we obtain x = min tr(s) ∩ tr(γ), where the minimum is taken

with respect to ≺γ.
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In Figure 15 the di�erent starting conditions given by various restriction mappings is

illustrated.

3.1.6 Remark. In case of a degenerate starting / unidirectional restriction σ, the sets

σ(a, v) are singletons by de�nition. It is not hard to show that σ(a, v) is connected for

all (a, v) ∈ F in case of a continuation restriction. The boundary points1 x of σ(a, v)
in case of non-degenerate starting / unidirectional restrictions are the boundary points

of tr(s) or x = S(γ) for some γ ∈ S with τγ(x) = ±τs(x) (cf. Figure 15). Note that in

case of a non-degenerate starting restriction, there might exist (a, v) ∈ F s.t. σ(a, v) has
really two connected components. An example is given in Figure 16.

As an oriented arc is uniquely de�ned by its starting and end point and exiting direction,

restriction maps restrict the set of all feasible oriented arcs ending in the same point

and having the same exiting direction. Recalling the notation Sn of De�nition 2.5.3,

we can de�ne the set of all arc splines which satisfy a starting restriction given by a

restriction map σ ∶ F → K(tr(s)) depending on a starting segment s. We de�ne the

sets of arc splines that satisfy the starting restrictions given by a generalized arc s and

a corresponding mapping σ. Note that these sets are at �rst independent on K for a

channel (K,s); they only depend on s and σ respectively.

3.1.7 De�nition. Let s be a path of a generalized arc tr(s), and let σ ∶ F → K(tr(s))
be a restriction map. For each (a, v) ∈ F we de�ne the set of all oriented arcs ending in

a with exiting direction v and satisfying the starting condition given by σ:

S1(σ, a, v) ∶=S(σ, a, v) ∶= {γ ∈S ∣ E(γ) = a, τγ(a) = v, S(γ) ∈ σ(a, v)} .

Accordingly, we set:

S1(σ, a) ∶=S(σ, a) ∶= ⋃
v∈S1 with (a,v)∈F

S(σ, a, v) and S1(σ) ∶=S(σ) ∶= ⋃
(a,v)∈F

S(σ, a, v).

Let n ∈N∖{0}. Then, the set of all (smooth circular) arc splines with n segments ending

in a ∈R2 with exiting direction v ∈ S1 and satisfying the starting condition given by σ is

set as follows:

Sn(σ, a, v) ∶= {γ ∶= γ1⋯γn ∈Sn ∣ E(γ) = a, τγ(a) = v, γ1 ∈S(σ)} .

Likewise, we can de�ne the sets Sn(σ, a) and Sn(σ).
1The boundary is built with respect to the relative topology on C(s).
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s s

a a

v v

σ(a, v)

σ(a, v)

tr(s) = σ(a, v) s

a a

v v

σ(a, v)

Figure 15: Illustration of restriction maps given by De�nitions 3.1.3, 3.1.4 and 3.1.5 for an arbitrary

(a, v) ∈ F . Top left: Starting restriction. Bottom left: Degenerate starting restriction. Top right:

Unidirectional restriction. Bottom right: Degenerate unidirectional restriction
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s

a

v

Figure 16: Example of σ(a, v) having two connected components.

So far, we have seen that generalized arcs induce restrictions on those arc splines we are

interested in by corresponding mappings σ. However, the channel itself restricts the set

of feasible arc splines as well. Clearly, we only want to focus on those arc splines staying

inside the channel, i.e. inside IK .

For every (K,s) we use the notations ωK , IK and EK as de�ned in De�nition 3.1.1.

Then we can de�ne the subsets of arcs contained in Sn(σ) (cf. De�nition 3.1.7) which

additionally stay inside IK :

3.1.8 De�nition. Let (K,s) be a channel and σ ∶ F → K(tr(s)) a restriction map. For

every n ≥ 1 we de�ne subsets which only include the elements contained in IK:

i) Sn
K(σ, a, v) ∶= {γ ∈Sn(σ, a, v) ∣ tr(γ) ⊂ IK},

ii) Sn
K(σ, a) ∶= {γ ∈Sn(σ, a) ∣ tr(γ) ⊂ IK},

iii) Sn
K(σ) ∶= {γ ∈Sn(σ) ∣ tr(γ) ⊂ IK}.

The elements of Sn
K(σ, a, v) are called visibility splines (with segment number n)

(with respect to (K,s, σ)).

We use the abbreviations SK(σ) ∶= S1
K(σ), SK(σ, a) ∶= S1

K(σ, a) and SK(σ, a, v) ∶=
S1
K(σ, a, v). A visibility spline consisting of one segment is simply called visibility arc.
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When examining the points that can be reached by a smooth arc spline, we �rst focus

on the set of points that are circularly n-visible with respect to the elements of Sn

since tr(Sn) is not closed as seen in Chapter 2. Working with these sets simpli�es the

complexity of notation considerably.

3.1.9 De�nition. Recalling De�nition 2.5.22, we set for (a, v) ∈ F and n ∈N ∖ {0}:

Sn
K(σ, a, v) ∶= {γ ∈Sn ∣ ∃A ∈ tr(Sn

K(σ, a, v)) with tr(γ) = A, τγ(a) = v} .

Likewise, we de�ne the sets Sn
K(σ, a) and Sn

K(σ).
Then the set of all n-(circularly) visible points (with respect to (K,s, σ)) is de�ned
by

V n
K(σ) ∶= {a ∈ IK ∣ Sn

K(σ, a) ≠ ∅} ∪ tr(s).

Instead of 1 − visible we just say (circularly) visible and write: VK(σ) ∶= V 1
K(σ).

We call the paths of Sn
K(σ) generalized visibility splines.

Each γ ∈Sn
K(σ, a, v) is an arc spline (not necessarily smooth) by de�nition and it is not

hard to show that γ has the endpoint a. Hence Sn
K(σ, a, v) is well-de�ned.

Since the visibility splines and visibility sets depend on both a channel and a restriction

map, the following de�nition is useful:

3.1.10 De�nition. A triple (K,s, σ) is called tolerance channel if (K,s) is a channel
and σ ∶ F → K(tr(s)) is a restriction map for s.

If σ is a (degenerate) starting or a (degenerate) unidirectional restriction, we call (K,s, σ)
a (degenerate) starting channel or (degenerate) continuation channel respec-

tively. If σ is not degenerate, we also call (K,s, σ) non-degenerate.

(Degenerate) continuation channels play an important role in examining the sets V n
K(σ)

(cf. Section 3.6) and therefore in solving Problem 3.1.16. Before we establish some

properties of tolerance channels, which we need to prove the subsequent claims, we give

two examples.

3.1.11 Example. Let ω ∶= ω1⋯ωn be a closed CCW oriented polygonal curve in mini-

mal representation. We set K ∶= tr(ω) and choose a generalized arc s with tr(s) ⊂ IK .
Denoting the corresponding starting restriction of s by σ ∶ F → K(tr(s)) (cf. De�ni-

tion 3.1.3), we obtain a starting channel (K,s, σ) and, in case of s being a point, a
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degenerate starting channel. Both situations are visualized in Figure 17 (top left and

bottom left).

In this example we obtain the circular visibility set which in literature is called circular

visibility of s if tr(s) is an edge of K, and circular visibility of x if tr(s) =∶ {x} is a

point.

3.1.12 Example. Assuming the situation described in Example 3.1.11 and replacing the

restriction map σ by the (degenerate) unidirectional restriction of s (cf. De�nition 3.1.4

and De�nition 3.1.5), we get a (degenerate) continuation channel (K,s, σ).

Example 3.1.12 is visualized in Figure 17 (top right, bottom right). The shaded portions

shall indicate the set IK ∖ VK(σ) for the four di�erent restriction maps.

Note that the boundary of the sets VK(σ) are given by visibility arcs which have points

with K in common. These arcs `alternatively' touch K from the `right' and from the

`left' in a convenient manner. In the next section we will introduce the term alternating

sequence in order to characterize these visibility arcs and VK(σ) by such alternating

boundary points.

Another important property of tolerance channels is presented in the following lemma.

3.1.13 Lemma. Let (K,s, σ) be a tolerance channel and a ∈ IK. Then, there exists an

ε > 0 s.t. (K̃, s, σ) is a tolerance channel, where K̃ is de�ned by IK̃ = IK ∪Bε(a).

Proof. Since ωK is piecewise Rω, K̃ is the trace of a piecewise Rω Jordan curve for

su�ciently small ε > 0.

We now examine further properties of tolerance channels:

3.1.14 Remark. Although SK(σ, a) = SK(σ, a) for all a ∈ VK(s) ∖ tr(s), there might

be points inside IK which can be reached by an arc spline γ ∈ Sn
K(σ), but there is

no visibility spline with n segments ending in one of these points (cf. Figure 53 on

page 120). Hence the set {a ∈ IK ∣ Sn
K(σ, a) ≠ ∅} is not closed in general, as we will see

later on. Consequently, the de�nition of V n
K(σ) is quite canonical.

As indicated in Chapter 1, we are looking for an arc spline starting at tr(s) and ending

in a certain destination. Therefore, we establish the following de�nition:
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s s

s s

Figure 17: Illustration of (degenerate) starting /continuation channel given by a polygon and their

corresponding visibility sets. Top left: Non-degenerate starting channel; top right: Non-degenerate

continuation channel; bottom left: Degenerate starting channel; bottom right: Degenerate continuation

channel.
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3.1.15 De�nition. A quadruple (K,s, σ, d) is called start-destination channel if

(K,s, σ) is a tolerance channel with tr(s) ⊂K and d is a path of a generalized arc with

i) tr(d) ⊂K and

ii) (TIK(x))○ ≠ ∅ for all x ∈ tr(d)
iii) tr(d) ∩ tr(s) = ∅.

If K is a polygon and tr(s) and tr(d) are edges or vertices of K, we exactly have

the situation given in the minimum link problem. However, we want to focus on the

generalization to smooth arc splines and an arbitrary start-destination channel.

Setting S∞
K(σ, d) ∶= {γ ∈S∞

K(σ) ∣ E(γ) ∈ tr(d)} by abuse of notation, we can formulate

the problem we are interested in, precisely:

3.1.16 Problem.

Let (K,s, σ, d) be an arbitrary start-destination channel.

Then we are searching for an arc spline γ0 ∈S∞
K(σ, d) with

∣γ0∣ = min{∣γ∣ ∈N ∣ γ ∈S∞
K(σ, d)} .

We have already seen an exemplary situation in Figure 4 on page 9. In this formulation

we consciously omitted the closure bar over S∞
K(s, d), i.e. we are interested in a smooth

arc spline satisfying the properties required above.

3.1.17 Remark. As already mentioned, according to the term minimum link path

(cf. [6, 73, 74]), call an arc spline solving the problem formulated above smooth mini-

mum arc path (with respect to (K,s, σ, d)).

Every start-destination channel possesses a smooth minimum arc path since we now

show that S∞
K(σ, d) is not empty.

3.1.18 Proposition. For every start-destination channel (K,s, σ, d) the set S∞
K(σ, d)

is not empty.

Proof. By Proposition 2.4.24 we can choose a curve γ of �nite length starting at tr(s)
and ending in tr(d) with tr(γ) ⊂ IK and K ∩ tr(γ) ⊂ tr(s) ∪ tr(d). Since the interior of
TIK(x) is not empty for all x ∈ tr(s) ∪ tr(d) and dist(tr(γ),K ∖ (U ∪ V )) > 0 for every

open set U , V containing tr(s) and tr(d) respectively, we can approximate this curve

by a smooth arc spline with a �nite number of segments and staying in IK .
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Thus, the minimum number de�ned above and therefore a minimum arc path always

exists. Of course, we obtain the existence of a solution this way. However, practical

implementation requires concrete and constructive approaches. For this purpose, a

mathematical characterization of solutions is needed.

In order to solve the problem constructively we �rst examine the sets V n
K(σ) since it is a

priori not clear at all where to set the breakpoints when constructing a smooth minimum

arc path γ0. In any case, the destination segment d is n- but not (n−1)-circularly visible
for some n ∈N, i.e. the intersection tr(d)∩V n

K(σ) is not empty, but tr(d)∩V n−1
K (σ) = ∅.

Since it might happen that we only obtain a generalized visibility spline γ0 ∈ S∞
K(σ, d),

we give a strategy how to 'smooth' such a generalized visibility spline without losing the

minimal possible number required in the problem formulation above, in Section 3.7.

For the remaining part of this chapter let (K,s, σ) be an arbitrary tolerance channel.

Finally, we examine some basic properties of the visibility set VK(σ), in this section.

3.1.19 Lemma. VK(σ) is (path-)connected and compact.

Proof. For any two points a1, a2 ∈ VK(σ) there exist paths γi ∈ SK(σ, ai), i = 1,2.

Since tr(γ1), tr(γ2) and tr(s) are subsets of VK(σ), there is a path ω in VK(σ) with

tr(ω) ⊂ tr(γ1) ∪ tr(γ2) ∪ tr(s) connecting a1 and a2.
Since VK(σ) ⊂ IK is bounded, it is su�cient to show that VK(σ) is closed. Let (an)n∈N
be a sequence in VK(σ) with limit point a ∶= lim

n→∞
an, which is contained in IK since

IK is compact. W.l.o.g we can assume an, a /∈ tr(s) for all n ∈ N (cf. Remark 3.1.14).

Hence by de�nition there exists a visibility arc γn ∈ SK(σ, an) for each n ∈ N. Setting

xn ∶= S(γn) and vn ∶= τγ(an), we obtain convergent subsequences (xnj)j∈N and (vnj)j∈N
in IK and S1 respectively, with x ∶= lim

j→∞
xnj and v ∶= lim

j→∞
vnj . As tr(γn) is included in the

compact set IK for all n ∈ N and a /∈ tr(s), we have (a, v) ∈ G and therefore (a, v) ∈ F
(cf. De�nition 3.1.2). By Lemma 2.5.26 and Lemma 2.5.18, we have lim

j→∞
tr(γxnj ,anj ,vnj ) =

tr(γx,a,v) ⊂ IK . Since σ is continuous, we have lim
j→∞

σ(anj , vnj) = σ(a, v) and hence

x = S(γx,a,v) ∈ σ(a, v). Consequently, γx,a,v ∈SK(σ) and therefore a ∈ VK(σ).

3.1.20 De�nition. If (K,s, σ, d) is a start-destination channel, the set K∖(tr(s)∪tr(d))
has two connected components Ol and Or. Then we de�ne the compact subsets

Kl ∶= Ol = tr(ωl) and Kr ∶= Or = tr(ωr)
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s

d

Kl

Kr

Figure 18: Left Kl and right bordering set Kr.

where ωl and ωr are paths starting in tr(s) and ending in tr(d) with ωl = ω−1K ∣[al,bl] and
ωr = ωK ∣[ar,br] for some points al, ar ∈ tr(s) and bl, br ∈ tr(d). Therefore, Kl is called the

left bordering set and Kr the right bordering set ( see Fgure 18).

One can imagine the left and right channel as the subset of K which can be seen on the

left or the right respectively `standing' on tr(s) and looking into the interior IK .
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3.2 Alternating Sequences

Motivated by classical Chebyshev approximation theory1, we introduce a new and very

useful term: Alternating Sequences. As we have seen in Lemma 2.1.5, circles and lines

have �nite interpolation properties. For example, a circle is uniquely determined by

three distinct points, a line by two. Regarding this is therefore of great importance

when reading the following sections. A physicist would say an arc has three `degrees

of freedom'. Alternating sequences are used to characterize these `degrees of freedom'

de�ning a circular arc or a line segment.

In approximation theory alternation sets are treated in the �eld of function and spline

spaces, where alternating sequences of +1 and −1 characterize certain solutions. Al-

though we cannot transfer this concept directly, we use the main idea of alternately

obtaining `oppositional terms' like `left' and `right'. Whenever a visibility arc of a tol-

erance channel is in an `extremal' position, its `variability' is restricted by left and right

restrictions.

Before we can introduce the terms alternating sequence and alternating number, we need

some notation and basic de�nitions: The starting point of this approximation calculus

is the concept of best approximation. Although we could generalize this concept, for

instance, to normed vector spaces, we, at this point, restrict ourselves to the real plane.

For every subset M of R2 and x ∈R2 we can consider the set

PM(x) ∶= {u ∈M ∣ ∥x − u∥ = dist(x,M)}

containing all nearest points to x from M . These elements are also said to be best

approximating points (cf. [17]). Usually PM is understood as set-valued mapping

PM ∶R2 →P(R2) and is called the metric projection of R2 on M .

In general, PM(x) is not a singleton, but setting OM ∶= {x ∈R2 ∣ card (PM(x)) = 1}, we
have exactly one ux ∈ M with PM(x) = {ux} for every x ∈ OM and hence the mapping

πM ∶ OM →R2, πM(x) ∶= ux is well-de�ned. Figure 19 depicts an exemplary situation.

The idea of alternating sequences is based on alternately touching K from the left and

the right. In this case, the terms `left' and `right' depend on the arc, so they have to

be understood in a local, not a global sense. For this purpose, we introduce some useful

1The term Chebyshev approximation problem is commonly used for the approximation problem for

the space of real or complex valued function on a compact set endowed with the sup-norm (cf. [17]).
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ω

x

τω (πtr(ω)(x))

πtr(ω)(x)

L⊥ω ⊂ Lω

R⊥ω ⊂ Rω

Figure 19: Illustration of De�nition 3.2.1.

notions depending on the paths or arcs that shall supply such alternating sequences.

The terms which are introduced are somewhat technical. Nevertheless, they will simplify

further de�nitions and proofs.

3.2.1 De�nition. Let ω be a smooth oriented curve in R2. If we set M ∶= tr(ω), we
can de�ne

i) Rω ∶= {x ∈R2 ∣ det (x − y, τω(y)) > 0 for all y ∈ PM(x)} and analogously

ii) Lω ∶= {x ∈R2 ∣ det (x − y, τω(y)) < 0 for all y ∈ PM(x)}

where τω(x) denotes the tangent unit vector of ω in x ∈ tr(ω). We call Rω the right

region and Lω the left region of ω. Furthermore, we de�ne the subsets

i) R⊥ω ∶= {x ∈ Rω ∣ ⟨x − y∣τω(y)⟩ = 0 for all y ∈ PM(x)} and

ii) L⊥ω ∶= {x ∈ Lω ∣ ⟨x − y∣τω(y)⟩ = 0 for all y ∈ PM(x)}.

Figure 19 illustrates the sets de�ned above.

For the remaining part of this section let (K,s, σ) be an arbitrary tolerance channel.

Visibility arcs of (K,s, σ) starting at boundary points1 of σK(a, v) are `extremal' in a

certain way. Therefore, we de�ne the following sets:

1The boundary is built with respect to the relative topology on tr(s).
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s

γ

a v

L⊥(γ)

L(γ)

R⊥(γ) R(γ)

Figure 20: Illustration of De�nition 3.2.3. Visibility arc γ ∈SK(σ, a, v) for some a ∈ VK(σ) and v ∈ S1.

L(γ): Black dashed; R(γ): solid grey; L⊥(γ): Orange part of L(γ); R⊥(γ): Blue part of R(γ).

3.2.2 De�nition. Let s be an oriented arc and M a compact subset of tr(s). Then we

de�ne the subsets

i) Extmin(M) ∶= {x ∈M ∣ x = minC for some C ∈ Z} and

ii) Extmax(M) ∶= {x ∈M ∣ x = maxC for some C ∈ Z},

where Z denotes the set of connected components of M and min,max are taken with re-

spect to `≺s'. We call the elements of Ext(M) ∶= Extmax(M)∪Extmin(M) the extremal

points of M and M ri ∶=M ∖Ext(M) the relative interior of M (see Figure 21).

If M is a singleton, we have M = Ext(M) and M ri = ∅.

In order to de�ne left and right restrictions, we introduce the subsets of K which are on

the `left' and on the `right' of a visibility arc γ:

3.2.3 De�nition. Let a ∈ VK(σ) and γ ∈ SK(σ, a). The subsets Lγ ∩ (K ∖ tr(s)ri)
and Rγ ∩ (K ∖ tr(s)ri) of K are called left and right contour with respect to γ.

We use the abbreviations L(γ) and R(γ) respectively, and in the same way we de�ne:

L⊥(γ) ∶= L⊥γ ∩ (K ∖ tr(s)ri) and R⊥(γ) ∶= R⊥γ ∩ (K ∖ tr(s)ri).

An illustration can be found in Figure 20.

Using the notions already introduced, we show: If two visibility arcs γ1, γ2 are feasible,

i.e. γ1, γ2 ∈ SK(σ), the arcs `between' them are feasible as well. In fact, this isn't

an inclusion in the common sense, but nevertheless we call the following lemma the

Inclusion-Lemma. However, �rst we need another term, which is important in order
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to formalize what `between' means. We want to be able to talk about left and right

extremal points of sets σ(a, v), and to introduce an order on these sets.

3.2.4 De�nition. Let (a, v) ∈ F and x0 ∈ Ext(σ(a, v)). We set

x̃0 ∶= max(tr(γx0,a,v) ∩ tr(s)) and M ∶= {max(tr(γx,a,v) ∩ tr(s)) ∣ x ∈ σ(a, v)} ,

where max is taken with respect to ≺γx,a,v . Then x0 is called a left [right] extremal

point of M with respect to (a, v) if there exists a neighborhood U of x̃0 s.t. for all

x ∈ TM(x̃0) and y ∈ U ∩ tr(γx0,a,v) the inequality det(x, y − x̃0) ≥ 0 [≤ 0] holds.

A visualization can be found in Figure 21. If (K,s, σ) is a starting channel, we have

M = σ(a, v) and otherwise card (σ(a, v) ∩M) = 1.

3.2.5 Remark. If (a, v) ∈ F and Z is an arbitrary connected component of σ(a, v),
then there exists exactly one left extremal point xl and one right extremal point xr of

Z. We denote the canonical order on s which induces xl to be the minimum and xr to

be the maximum of Z by ⪯(a,v).

Informally speaking, one can imagine the left and the right extremal point of a connected

component Z of σ(a, v) as the points which you can see on the left and on the right

`standing' on Z and looking towards the starting direction of the corresponding arcs

ending in a with exiting direction v.

3.2.6 Convention. Let x1, x2 be points of a connected component of σ(a, v). Then

we use the abbreviation [x1, x2] ∶= {x ∈ σ(a, v) ∣ x1 ⪯(a,v) x ⪯(a,v) x2} instead of writing

[x1, x2](a,v). The sets ]x1, x2], [x1, x2[ and ]x1, x2[ are de�ned analogously.

Once we have introduced the order ≺(a,v), we can now state and prove the Inclusion-

Lemma:

3.2.7 Lemma (Inclusion). Let (a, v) ∈ F and γ1, γ2 ∈ S(σ, a, v) s.t. T ∶=]S(γ1), S(γ2)[
is a subset of σ(a, v). For every x ∈ T we get tr(γx,a,v) ∖ {a} ⊂ Rγ1 ∩ Lγ2.

Proof. The path ω de�ned by ω ∶= s ∣[S(γ1),S(γ2)] γ2γ−11 is a loop in IK . Denoting the

interior of ω by I12, on the one hand, we obtain tr(γx,a,v) ⊂ I12 ∪ {a} ∪ T for every x ∈ T
since I12 ⊂ IK is simply connected. On the other hand, we have tr(γx,a,v)∩tr(γ1) = {a} =
tr(γx,a,v)∩tr(γ2) and I12 ⊂ Rγ1∩Lγ2 since Rγ ∪ Lγ =R2 and Rγ, Lγ are disjoint for every
oriented arc γ. Hence the assertion follows.
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M = σ(a, v)

M = σ(a, v)

σ(a, v)
M

s

s

s

a

a

a

v

v

v

x1 x2

x1

x2

x1

x̃1

x̃2 = x2

Figure 21: Extremal points of σ(a, v) ⊂ tr(s). Top left: x̃1 = x1 left extremal, x̃2 = x2 right extremal;

top right: x̃1 = x1 right extremal, x̃2 = x2 left extremal; bottom: x1 left extremal, x2 right extremal;

The dashed circles indicate neighborhoods U and the green line segments indicate x and y − x̃0 as in

De�nition 3.2.4



3. Mathematical Modeling and Results 65

s

a
v

γ1
γ2

Figure 22: L(γ1) =K ≠ ∅ = L(γ2) and R(γ1) = ∅ ≠K = R(γ2) with γ1, γ2 ∈SK(σ, a, v).

While σ(a, v) is the set of feasible starting points with respect to the starting condition

given by σ and s, we introduce the subset of all starting points x ∈ σ(a, v) whose

corresponding arcs γx,a,v stay in IK :

3.2.8 De�nition. For any (a, v) ∈ F with SK(σ, a, v) ≠ ∅ we de�ne the set

σK(a, v) ∶= {S(γ) ∈ σ(a, v) ∣ γ ∈SK(σ, a, v)} .

3.2.9 Remark. Considering the situation of the de�nition above, we obtain by the

Inclusion-Lemma 3.2.7: The left contour L(γ) and right contour R(γ) with respect to

all γ ∈SK(σ, a, v) are equal if σK(a, v) is connected.
Note that, if σK(a, v) has two connected components, arcs γ1, γ2 ∈ SK(σ, a, v) having

distinct left or right contours might exist. In fact, L(γ), L⊥(γ) and R(γ),R⊥(γ) are

compact, but they might be empty (see Figure 22).

3.2.10 Proposition. Let (a, v) ∈ F with SK(σ, a, v) ≠ ∅. Then σK(a, v) has at most

two connected components.

Proof. By de�nition σK(a, v) is a subset of σ(a, v) and for every connected component

C of σ(a, v) the set C∩σK(a, v) is connected in tr(s) by the Inclusion-Lemma 3.2.7. The

fact that σ(a, v) has at most two connected components (cf. Lemma 3.1.13) concludes

the proof.

Now we are able to state the terms left/right restriction and the associated notions

alternating sequences and alternating numbers.
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3.2.11 De�nition. Let γ ∈ SK(σ) and M ∶= σ (E(γ), τγ(E(γ))). A point a ∈ tr(γ) is

called a right restriction point (of γ) if one of the following conditions are satis�ed:

i) a ∈ R(γ) is neither the starting point nor the endpoint of γ,

ii) a = E(γ) ∈ R(γ) and −τγ(a) ∈ TK(a),
iii) a = S(γ) is a right but not a left extremal point of M and a /∈ L(γ) or

iv) a = S(γ) and −τγ(a) ∈ TR(γ)(a).

We also say γ has a right restriction at a. Left restriction points can be de�ned

analogously. A point a ∈ tr(γ) is called restriction point if it is a left or right restriction

point.

The terms left and right restriction point are well-de�ned. The cases i) and ii) are clear.

In case of a right restriction at the starting point a ∶= S(γ), the cases iii) and iv) are

consistent with one another. If a ∶= S(γ) is an extremal point of M but a /∈ Ext(tr(s)),
we have a /∈ L(γ) ∪R(γ) since a /∈K ∖ tr(s).

The various cases of right restrictions of a visibility arc γ with respect to a starting

channel are depicted in Figure 24 and 25 and, in case of a continuation channel, in

Figure 26. The �rst two pictures illustrate case i) and the third one case ii). Examples

for right restrictions at the starting point S(γ) can be seen in the second row of Figure 24.

As σ(a, v) is always a singleton for all (a, v) ∈ F in case of a degenerate restriction map

σ, the corresponding starting point would be a left and a right restriction point, but this

case has been excepted from De�nition 3.2.11 for good reasons as we will see later on.

Moreover, we introduce a further term, pseudo restrictions to include this situation.

A similar situation might appear when considering a non-degenerate tolerance channel.

There might be a pair (a, v) ∈ F and γ ∈ SK(σ, a, v) s.t. all the other arcs γx,a,v with

x ∈ σ(a, v) ∖ {S(γ)} start in the direction of EK and not inside IK (cf. Figure 23).

We now give a formal de�nition of the ideas indicated above:

3.2.12 De�nition. Let γ ∈ SK(σ, a) for some a ∈ VK(σ) and v ∶= τγ(a). The starting

point x0 ∶= S(γ) is called pseudo restriction (of γ) if

i) card (σ(a, v)) = 1 or

ii) for all x ∈ σ(a, v)∖{x0} and all neighborhoods U of x the intersection U ∩tr(γx,a,v)∩
EK is not empty.

We also say that γ has a pseudo restriction at x0.
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Figure 23: Pseudo restrictions x of γ ∈ SK(σ, a, v) within a starting channel (left) and continuation

channel (right). The gray, dashed arcs start in the direction of EK . Particularly, they are not contained

in SK(σ, a, v).

Obviously, every visibility arc of a degenerate tolerance channel has a pseudo restric-

tion at S(γ), but pseudo restrictions might also appear in the case of non-degenerate

tolerance channels as shown in Figure 23.

In literature (e.g. [23]) the term support is used in a similar manner as left and right

restrictions but not in such a strict and general sense. Supports depend on the explicit

structure of polygons as bounding channels and they are limited to starting channels.

Furthermore, they do not supply notions like `support sequences' and 'support num-

bers', which are essential for the calculus of circular visibility. The treatment of pseudo

restrictions is missing, too. Hence the results of Chou et al. (cf. [22]) are not generally

correct, as we will see later on.

3.2.13 Remark. Note that a point a ∈ tr(γ) cannot simultaneously be a left and a right

restriction point, but it could be a left / right restriction and a pseudo restriction point.

In Figure 24 bottom right a is a right but not a left restriction point although a is a left

extremal point of tr(s) with respect to γ. Hence we have a pseudo restriction addition-

ally. Assuming that (K,s, σ) is degenerate, every starting point of every visibility arc

is a pseudo restriction point since σ(a, v) is a singleton for all (a, v) ∈ F .

We now characterize the coherence of the sets L⊥(γ), L(γ) [R⊥(γ), R(γ)] and the set

of all left [right] restrictions of a visibility arc γ.
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τγ(a) ∈ TK(a)

Figure 24: Illustration of De�nition 3.2.11 in case of a starting channel. The various possibilities of

right restrictions a of a visibility arc γ ∈SK(σ, a0, v) are depicted.

s s

a a
v v

γ1 γ2

−TK(a) −TK(a)

Figure 25: Right restrictions at the endpoint of a visibility arc. On the left we can see that v ∈ (−TK(a)),

whereas on the right γ doesn't touch K. Hence γ1 has a right restriction in a but γ2 not.
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Figure 26: Illustration of De�nition 3.2.11 in case of a continuation channel. Left restrictions a1, a2

and right restrictions a3, a4. The point a1 = min(tr(s)) with respect to ≺s, but it is a left and not a

right extremal point of σ(a, v).

3.2.14 Remark. Clearly, the intersection tr(γ) ∩ L⊥(γ) is empty if and only if the set

tr(γ) ∩ L(γ) is empty. If γ has no left restriction at S(γ) and E(γ) /∈ K, this is also

equivalent to γ having no left restriction. Similar conditions hold for right restrictions,

R(γ) and R⊥(γ). Note that the requirement not to consider the endpoint of γ is crucial

for the statement above (see Figure 25).

With the aid of left and right restrictions alternating sequences can be de�ned as follows:

3.2.15 De�nition. Let γ ∈ SK(σ). A �nite sequence of points (ai)1≤i≤m in tr(γ) ∩K
is called alternating sequence (of γ) if

i) it is increasing with respect to ⪯γ and

ii) a1 is a pseudo, right or left restriction point and ai is a right or left restriction point

of γ for all 2 ≤ i ≤m.

The set of all alternating sequences is denoted by A(γ) and for every (ai)1≤i≤m ∈ A(γ)
we can set the numbers

σi ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ai is a right restriction point,

−1 if ai is a left restriction point,

0 if ai is a pseudo restriction point,

for 1 ≤ i ≤m and
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εi ∶= ε(σi) ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if σiσi+1 ≤ 0,

0 otherwise
for 1 ≤ i ≤m − 1.

3.2.16 De�nition. Hence the alternating number of (ai)1≤i≤m is set to

A((ai)1≤i≤m) ∶= 1 +
m−1

∑
i=1

εi ∈N.

We say (ai)1≤i≤m is of length k if A((ai)1≤i≤m) = k. Accordingly, we get the alternating
number of γ:

A(γ) ∶= max
(ai)i∈A(γ)

A((ai)i),

where A(γ) is set to 0 if A(γ) is empty.

3.2.17 Remark. The number A(γ) is �nite for all γ ∈ SK(σ): Since L(γ), R(γ) and

tr(γ) are traces of piecewise Rω curves, by Proposition 2.4.25 there exist �nite sets EL,

ER, sets JL, JR and integers nL, nR ∈N s.t.

i) L(γ) ∩ tr(γ) = EL ∪ JL and R(γ) ∩ tr(γ) = ER ∪ JR and

ii) JL (JR) is homeomorphic to a disjoint union of nL (nR) intervals in R.

Furthermore, L(γ) ∩R(γ) ⊂ tr(s) and every left / right restriction point a ∈ γ ∖ tr(s) is
included in L(γ) / R(γ). Thus, we have

A((ai)i) ≤ card(EL) + card(ER) + nL + nR + 2

for every alternating sequence (ai)i of γ and hence A(γ) is well-de�ned.

These `alternating conditions' depend on local properties: Left restrictions might appear

in Kr or vice versa (see Figure 28 on the right). They allow an e�cient characterization

of circular arcs describing the circular visibility set, but before we proceed with our

theory, we'll give an example to familiarize ourselves with alternating sequences and

alternating numbers. Further illustrations can be found in Figure 28 and 29.

3.2.18 Example. Let (K,s, σ) be a non-degenerate starting channel and γ ∈SK(σ).
Considering the alternating sequence (ai)1≤i≤6, which is depicted in Figure 27, we have

three left restriction points a1, a2, a6 and three right restriction points a3, a4 and a5.

Thus, we obtain ε1 = ε3 = ε4 = 0, ε2 = ε5 = 1 and the alternating number of (ai)1≤i≤6 is

1 +∑5
i=1 εi = 3. Since this sequence contains all left and right restriction points of γ, we

have A(γ) = 3.



3. Mathematical Modeling and Results 71

γ

s
a1

a2

a3

a4

a5
a6

Figure 27: Example for the calculation of the alternating number of a visibility arc.

For an arbitrary visibility arc γ, we generally have a range of corresponding alternating

sequences supplying the same alternating number or rather yielding the alternating

number of γ. Due to this, the term introduced in the following de�nition is useful:

3.2.19 De�nition. Let γ ∈SK(σ). An alternating sequence (a1, a2) of length 2 is called

maximal with respect to a2 if

a1 = max{x ∈ tr(γ) ∣ (x, a2) is an alternating sequence of length 2} .

An alternating sequence (a1, . . . , am) of length m (m ≥ 2) is said to be maximal with

respect to am if (am−i, am−i+1) is maximal with respect to am−i+1 for all i = 1, . . .m− 1.

Examples are illustrated in Figure 28 and 29.

Before we can use alternating sequences to characterize the visibility set VK(σ), we need
some preliminaries �rst. The following propositions are rather technical and are only

used to prove the main results formulated subsequently.

3.2.20 Proposition. Let a ∈ VK(σ), γ ∈ SK(σ, a) with exiting direction v ∈ S1 and

L(γ) = ∅. Then there exists a neighborhood U of (S(γ), a, v) s.t. the set L⊥(γx,b,w) is

empty for all (x, b,w) ∈ U .

Proof. This can be easily deduced from Lemma 2.5.18.

3.2.21 Proposition (Contour Inclusion). Let a ∈ VK(σ), γ ∈ SK(σ, a) with exiting

direction v ∈ S1. Then there exist neighborhoods U of v in S1 and V of S(γ) in tr(s)
s.t. the inclusions L⊥(γx,a,w) ⊂ L(γ) and R⊥(γx,a,w) ⊂ R(γ) hold for all w ∈ U and all

x ∈ tr(s) ∩ σ(a,w).
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γ

γ

γ

s s s

d

A(γ) = 3 A(γ) = 1 A(γ) = 3

a1

a2

a3

a1

a1

a2
a3

Figure 28: Illustration of alternating sequences. The arc on the left has four left and four right

restrictions, but its alternating number is only three. In the middle we can see an arc having an in�nite

number of right restrictions, but A(γ) = 1. The right picture points out that 'alternating conditions'

depend on local properties. All depicted sequences (ai)i are maximal with respect to its last point.

γ
γ

γ
γ

s

s
s

a1 = a2

a3

a1

a2

{a1} = tr(s)

a2

a3

a1 = a2

a3

Figure 29: Illustration of alternating sequences II.

1) Non-degenerate starting channel; γ has a pseudo and a right restriction at S(γ); A(γ) = 3.

2) Non-degenerate continuation channel, A(γ) = 2.

3) Degenerate starting channel; trivially γ has a pseudo restriction at S(γ); A(γ) = 3.

4) Degenerate continuation channel; γ has a pseudo and a left restriction at S(γ); A(γ) = 3.

All depicted sequences (ai)i are maximal with respect to its last point.
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tr(s) = σ(a, v)σK(a, v)

left
restriction

right
restriction

a
v

Figure 30: Restrictions given by K. In general we have σ(a, v) ≠ σK(a, v)

Proof. Again, the proposition follows from Lemma 2.5.18.

We now develop further useful propositions that are also subsequently used to examine

characterizations of the visibility set VK(σ).
Assuming a visibility spline γ ∈ SK(σ) with a ∶= E(γ) and v ∶= τγ(a), we show the

existence of a γ0 ∈SK(σ, a, v) with A(γ0) ≥ 1. In case of a degenerate tolerance channel

this is clear since SK(σ, a) = {γ} and S(γ) is a pseudo restriction point. Otherwise,

we even prove that there are always visibility arcs γl and γr having a left and right

restriction respectively. The corresponding starting points are left and right extremal

points of σK(a, v). In general, the sets σ(a, v) and σK(a, v) are not equal. The next

proposition characterizes the sets σK(a, v). An illustration can be found in Figure 30.

3.2.22 Proposition. Let γl and γr be two oriented arcs ending in a ∈ VK(σ) with

exiting direction v ∈ S1 s.t. [S(γl), S(γr)] ⊂ σ(a, v), tr(γl) /⊂ IK, tr(γr) ⊂ IK and S(γr)
is not a pseudo restriction of γr. Then there exists a visibility arc γm ∈SK(σ, a, v) with

S(γl) ≺(a,v) S(γm) ⪯(a,v) S(γr) and L(γm) ∩ tr(γm) ≠ ∅.

Proof. For any x ∈ [S(γl), S(γr)] ⊂ σ(a, v) we have L(γx,a,v) ⊂ L(γr). If tr(γr) and L(γr)
are not disjoint, we can set γm ∶= γr and we are done. Otherwise, we have the non-empty
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set X ∶= {x ∈ [S(γl), S(γr)] ∣ dist(tr(γx,a,v), L(γr)) > 0}. Obviously, X is bounded below

with respect to `≺(a,v)' and we can set γm ∶= γx0,a,v with x0 ∶= inf(X) ∈ σ(a, v). Since S(γr)
is not a pseudo restriction, for all points x ∈ [S(γl), S(γr)] there exists a neighborhood

U s.t. U ∩ tr(γx,a,v) ∩ EK = ∅. Then, due to continuity reasons, it is easy to show

by means of the Inclusion-Lemma 3.2.7 that γm ∈ SK(σ, a, v) and L(γr) ∩ tr(γm) is

not empty. This concludes the proof since every intersection point of L(γr) ∩ tr(γm) is

trivially contained in L(γm).

Changing the roles of `left' and `right', we obtain:

3.2.23 Proposition. Let γl and γr be two oriented arcs ending in a ∈ VK(σ) with

exiting direction v ∈ S1 s.t. [S(γl), S(γr)] ⊂ σ(a, v), tr(γl) ⊂ IK, tr(γr) /⊂ IK and S(γl)
is not a pseudo restriction of γl. Then there exists a visibility arc γm ∈SK(σ, a, v) with

S(γl) ⪯(a,v) S(γm) ≺(a,v) S(γr) and R(γm) ∩ tr(γm) ≠ ∅.

Proof. See Proposition 3.2.22.

3.2.24 Lemma. Let a ∈ VK(σ), v ∈ S1 s.t. σK(a, v) ≠ ∅ and σ(a, v) contains no pseudo

restriction point. Furthermore, let Z be an arbitrary connected component of σK(a, v).
Then there exist points xl and xr s.t. [xl, xr] = Z, where γxl,a,v has a left and γxr,a,v has

a right restriction.

Proof. We can choose a connected component [x1, x2] of σ(a, v) that includes Z. If

x1 ∈ σK(a, v), we can set xl ∶= x1. Otherwise, tr(γx1,a,v) is not included in IK and

the situation of Proposition 3.2.22 is given. Hence the existence of a starting point

xl ∈ [x1, x2] satisfying γl ∶= γxl,a,v ∈ SK(σ, a, v) and tr(γl) ∩ L(γl) ≠ ∅ follows. In any

case, the arc γl has a left restriction. In the same way we get a point xr with the desired

properties. The Inclusion-Lemma 3.2.7 yields Z = [xl, xr].

From this result we can easily deduce the following:

3.2.25 Corollary. Let (a, v) ∈ F with σK(a, v) ≠ ∅. If σ(a, v) contains no pseudo

restriction point, we can choose visibility arcs γl, γr ∈ SK(σ, a, v) supplying a left or a

right restriction respectively.

Note that γl and γr are not necessarily distinct and we get:
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3.2.26 Lemma. Let a0 ∈ VK(σ), γ0 ∈ SK(σ, a0) and v0 ∶= τγ0(a0) ∈ S1. If γ0 has no

left [right] restriction there exists a neighborhood U of (a0, v0) in IK × S1 s.t. for all

(a, v) ∈ U there exists a γ ∈SK(σ, a, v) having no left [right] restriction.

Proof. Setting D ∶= IK × S1, there exists an ε0 > 0 and a neighborhood U of (a0, v0) in

D s.t. for all (a, v) ∈ U there exists a x ∈ σ(a, v) with tr(γx,a,v) ∩Bε(a0) ∩ L(γ0) ⊂ {a0}
for all 0 < ε < ε0 since γ0 has no left restriction and therefore tr(γ0) ∩ L(γ0) ⊂ {a}.
Then L(γ0) ∖ Bε(a0) is compact and dist(tr(γ0), L(γ0) ∖ Bε(a0)) > 0. Because of the

continuity properties of σ and the mapping (x, a, v) ↦ tr(γx,a,v) and Proposition 3.2.21

after possible diminution of U , for all (a, v) ∈ U we can choose x ∈ σ(a, v) s.t. for all

0 < ε < ε0 we have
dist(tr(γx,a,v), L(γ0) ∖Bε(a0)) > 0

and L⊥(γx,a,v) ⊂ L(γ0). Hence we have dist(tr(γx,a,v), L⊥(γx,a,v)) > 0 and the intersection

tr(γx,a,v) ∩Bε(a0) ∩L(γx,a,v) is included in {a0}.
If σ(a, v) is a singleton, we are done. Otherwise, since S(γ0) is not a left extremal

point of σ(a0, v0) and σ is continuous, for su�ciently small U we can choose an element

x ∈ σ(a, v) which is no left extremal point of σ(a, v) . Altogether, we have found a

neighborhood U s.t. for all (a, v) ∈ U there exists an arc γ ∈ SK(σ, a, v) which has no

left restriction. The argumentation works in a complete analogy if `left' and `right' is

changed.

Visibility arcs γ having an alternating number of at least two separate IK into at least

two connected components. Thus, every arc passing through these components `cuts' γ

between each two alternating restriction points:

3.2.27 Lemma (Cutting). Let γ ∈ SK(σ, a) for a circularly visible point a ∈ VK(σ).
For every alternating sequence (a1, a2, . . . , am) of length m ≥ 2 and a1 ≠ S(γ), am ≠ E(γ)
we obtain: tr(γ2) ∩ [ai, ai+1]γ ≠ ∅ for all γ2 ∈SK(σ, a) and i = 1, . . . ,m − 1.

Proof. Let i ∈ {1, . . . ,m − 1}. Then there exist two connected components Z1 and Z2 of

IK ∖ [ai, ai+1]γ with tr(s) ⊂ Z1 and a ∈ Z2. Hence for γ2 ∈SK(σ, a) we obtain S(γ2) ∈ Z1

and E(γ2) ∈ Z2. Since tr(γ2) is connected, it is no subset of Z1∪Z2, and the set inclusion

tr(γ2) ∩Z1 ∪ tr(γ2) ∩Z2 ⊂ [ai, ai+1]γ concludes the proof.
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3.3 Feasible Direction Sets

Let (K,s, σ) be an arbitrary tolerance channel. Generally, more than one circular arc

ending in a point a ∈ VK(σ) is feasible. In this section we are interested in all the exiting

directions τγ(a) of these visibility arcs γ since we later want to compose circular arcs

smoothly. I.e. the ending direction of the predecessor segment has to equal the starting

direction of the successor segment.

For this purpose, we �rst introduce the set of all feasible exiting directions of corre-

sponding visibility arcs ending in the same circularly visible point:

3.3.1 De�nition. For every a ∈ VK(σ) ∖ tr(s) the set

TK(σ, a) ∶= {v ∈ S1 ∣ ∃ γ ∈SK(σ, a) s.t. v = τγ(a)}

of all exiting directions of visibility arcs of a is called feasible direction set of a. We

set TK(σ, a) ∶= ∅ for all a ∈ tr(s).

An illustration can be found in Figure 31.

Note that TK(σ, a) is closely related to tangent cones of visibility arcs ending in a since

]0,∞[⋅TK(σ, a) = ⋃
γ∈SK(σ,a)

−Ttr(γ)(a).

Due to more convenient formulations in the sequel, we prefer the notation introduced

in De�nition 3.3.1.

3.3.2 Remark. The terms TK(σ, a)○ and ∂TK(σ, a) denote the interior and the bound-

ary of TK(σ, a) with respect to the relative topology on S1!

The properties of the feasible direction sets of the circularly visible points allow charac-

terizing the sets SK(σ, a) e�ciently. First we can show:

3.3.3 Proposition. For every a ∈ VK(σ) ∖ tr(s) the set tr(SK(σ, a)) is closed with

respect to the Hausdor� metric.

Proof. Let (An)n∈N be a convergent sequence in tr(SK(σ, a)) with A ∶= lim
n→∞

An. By

Lemma 2.5.26 A is a compact subset of IK and is either a point or A = tr(γ) for some

γ ∈ S. It is clear that a ∈ A and tr(s) ∩A ≠ ∅ since tr(s) is compact. Thus, A cannot

be a point. Let γn be the visibility arc corresponding to An for every n ∈ N and γ ∈ S
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with tr(γ) = A. The directions τγn(a) converge to τγ(a). Since σ is continuous and all

An are bounded, we get (a, τγ(a)) ∈ G and hence (a, τγ(a)) ∈ F and S(γ) ∈ σ(a, τγ(a)).
Thus, γ ∈SK(σ, a), i.e. A ∈ tr(SK(σ, a)).

3.3.4 Lemma. The feasible direction set TK(σ, a) ⊂ S1 is compact for every a ∈ VK(σ).

Proof. It is su�cient to consider a point a ∈ VK(σ) ∖ tr(s) since TK(σ, a) = ∅ for all

a ∈ tr(s). According to Proposition 3.3.3, the trace set M ∶= tr(SK(σ, a)) is closed with

respect to the Hausdor� metric. Let Ea ∶= {(x, v) ∈ tr(s) × S1 ∣ (a, v) ∈ F, x ∈ σ(a, v)} be

the subset of all feasible pairs of starting points and exiting directions in a. Furthermore,

the mapping fa ∶ Ea → K(R2), (x, v) ↦ tr(γx,a,v) is continuous with respect to the

product topology and by construction M is a subset of fa(Ea). Hence the pre-image

f−1a (M) is closed in Ea ⊂ tr(s) × S1 and thus compact since tr(s) × S1 is compact.

Consequently,

π2(f−1a (M)) = ⋃
(x,v)∈f−1a (M)

{v} = ⋃
γ∈SK(σ,a)

{τγ(a)} = TK(σ, a) ⊂ S1

is also compact since the canonical projection π2 is continuous.

To examine further properties, we focus on special exiting directions, namely `extremal'

ones in the following way:

3.3.5 De�nition. Let a ∈ VK(σ) and v ∈ TK(σ, a).

i) We call v left (right) extremal in TK(σ, a) if there exists a neighborhood U of

v in TK(σ, a) s.t. det(v,w) ≤ 0 (det(v,w) ≥ 0) for every w ∈ U .

ii) For neighborhoods U of v ∈ S1 we use the abbreviations U l ∶= {w ∈ U ∣ det(v,w) > 0}
and U r ∶= {w ∈ U ∣ det(v,w) < 0}.

iii) A visibility arc γ ∈ SK(σ, a) is called left/right extremal if τγ(a) is left/right

extremal in TK(σ, a).

3.3.6 Proposition. TK(σ, a) is locally connected for every a ∈ VK(σ).

Proof. By de�nition we have TK(σ, a) = {v ∈ S1 ∣ ∃ γ ∈SK(σ, a) s.t. v = τγ(a)} and ωK

is piecewise Rω. Assuming w.l.o.g. that TK(σ, a) ≠ S1, TK(σ, a) is semi-analytic set

by [75, 76] (cf. proof of Proposition 2.4.25). Hence it is homeomorphic to a �nite union

of points and intervals in R, which shows the assertion.
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ar2
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Figure 31: Extremal directions of a feasible direction set TK(σ, a). TK(σ, a) is displayed by the grey

sector. The boundary of it consists of the left and right extremal direction. Corresponding visibility arcs

γl, γr with associated alternating sequences (al1, a
l
2) and (ar1, a

r
2) are depicted as well. These alternating

sequences of length 2 satisfy the con�guration given in Theorem 3.3.9.

Thus, the boundary points ∂TK(σ, a) are left or right extremal. For the sake of brevity

we simply call them extremal. If we consider a left (right) extremal exiting direction

v of a ∈ VK(σ), then no visibility arc γ ∈ SK(σ, a) with a direction τγ(a) that is to the

left (right) of v in a suitable small neighborhood exists. The terms `left' and `right' are

used in a local, not in a global sense.

We will merge the two concepts `alternating sequences' and `feasible direction sets'

subsequently. In Section 3.2 we have seen that for �xed a ∈ VK(σ) and v ∈ TK(σ, a)
one can always choose a visibility arc γ with A(γ) ≥ 1. We now show that we even

get A(γ) ≥ 2 in case of an extremal direction v ∈ TK(σ, a). As already indicated,

alternating sequences are used to characterize the three degrees of freedom that visibility

arcs possess. Fixing two degrees and `driving one into a extremal position', we obtain

an alternating number of at least 1. If only the endpoint is �xed, we have two degrees of

freedom that can be modi�ed until they are in an extremal situation. Hence we obtain

an alternating number A(γ) ≥ 2.

3.3.7 Remark. Let a ∈ VK(σ) ∩ K and v ∈ TK(σ, a) with −v ∈ TK(a). Then a is a

right [left] restriction point for every visibility arc γ ∈ SK(σ, a, v) if a ∈ R(γ) [L(γ)].
Obviously, if a is a right [left] restriction point of γ, then v is left [right] extremal.
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3.3.8 Proposition. Let a ∈ VK(σ) and v ∈ TK(σ, a) be left [right] extremal. Then there

exists a γ ∈SK(σ, a, v) having a right [left] restriction.

Proof. It is not hard to prove this proposition since the mapping (a, b, v) ↦ tr(γa,b,v)
is continuous and the function A ↦ dist(A,L(γ)) is upper semi-continuous for every

visibility arc γ (cf. Proposition 2.3.4).

3.3.9 Theorem (Extremal directions). Let a ∈ VK(σ) and v ∈ ∂TK(σ, a). Then there

exist a visibility arc γ ∈SK(σ, a, v) and a corresponding alternating sequence (a1, a2) of

length 2 s.t. a2 is a right (left) restriction point if v is left (right) extremal. In particular,

we have A(γ) ≥ 2.

An illustration can be found in Figure 31.

Proof. Because of Proposition 3.3.8 we can assume card σ(a, v) = ∞. Let v be left

extremal. By Corollary 3.2.25 there exists a visibility arc γ ∈SK(σ, a, v) having a right

restriction. Let Xr denote the set of all right restriction points of γ. Since Xr is compact

and not empty, we can set xr ∶= maxXr with respect to ≺γ. If xr = a, we have a ∈K and

−v ∈ TK(a). But in this case a is a right restriction point of every visibility arc of a with

exiting direction v. Hence Corollary 3.2.25 allows choosing γ with an additional left

restriction. Otherwise, we have xr ≺γ a and hence there exists a point b ∈ tr(γ) and ε > 0

s.t. xr ≺γ b ≺γ a and Bε(b) ⊂ IK . Let γ1 ∈ SK(σ, b, τγ(b)) and γ2 ∶= γb,a,v s.t. γ = γ1γ2. If
γ1 additionally has a left restriction, we are done. Hence let us assume γ1 not to have a

left restriction for contradiction. Then neighborhoods U1 of τγ1(b) in S1 and V of S(γ)
in tr(s) exist s.t. V l ⊂ σ(b,w) for all w ∈ U r

1 and every visibility arc ω
(w)

1 ∈ SK(σ, b,w)
de�ned by (x, b,w) ∈ V l × {b} ×U r

1 has neither a left nor a right restriction.

Since γ2 has no right restriction by construction, we can choose a neighborhood U2 of v

in S1 s.t. for every ṽ ∈ U l
2 the arc ω

(ṽ)
2 de�ned by (b, a, ṽ) has no right restriction and

τ
ω
(ṽ)
2

(b) ∈ U r
1 since the mapping w ↦ τ

ω
(w)
2

(b) is continuous.
Thus, we get

∀w ∈ U l
2 ∃x ∈ V l ∃ṽ ∈ U r

1 s.t. γw ∶= ω(ṽ)
1 ω

(w)

2 ∈S(σ, a,w).

By construction, S(γw) ∈ σK(a,w), i.e. γw ∈SK(σ, a,w) (see Figure 32). Therefore, U l
2

is a subset of TK(σ, a). This contradicts v to be left extremal and proves the assertion.

The argumentation proceeds similarly if v is right extremal.
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Figure 32: Illustration of the proof of Theorem 3.3.9. The solid arc is γ = γ1γ2 and the dashed one γw

for some w ∈ U l2 as de�ned in the proof. The arrows indicate the points of Xr.

3.3.10 Remark. Note that the converse of the claim in the Theorem above is not true

in general. In Figure 33 we can see visibility arcs γ1, γ2 ∈SK(σ, a, v) having alternating

sequences (a(i)1 , a
(i)
2 ) of length 2 of γi, i = 1,2, but v is neither left nor right extremal.

It is not hard to prove that this is equivalent to TK(σ, a) = S1.

Furthermore, it is easy to see that TK(σ, a) = S1 implies that a is not on the boundary

of VK(σ). At least the following holds:

3.3.11 Lemma. Let a ∈ VK(σ) and v ∈ TK(σ, a) ≠ S1 s.t. σK(a, v) is connected. If a

visibility arc γ ∈ SK(σ, a, v) has an alternating sequence (a1, a2) of length 2 with a left

[right] restriction point a2, then v is right [left] extremal.

Proof. It is su�cient to consider a visibility arc γ ∈ SK(σ, a, v) with an alternating

sequence (a1, a2) of length 2, where a2 is a right restriction point. Let us assume to the

contrary that γ is not left extremal. Then for every neighborhood U of v there exists

a direction w ∈ U s.t. w ∈ TK(σ, a), det(v,w) > 0 and σK(a,w) is connected. Hence

γw ∣[x,a]∈ Rγ for some γw ∈ SK(σ, a,w) and x ∈ tr(γ2). On the one hand tr(γ2) ∩ [a2, a[
is not empty whenever ∥v −w∥ is su�ciently small since σ(a,w) is connected. But on

the other hand we have [S(γ), a2[∩tr(γ2) ≠ ∅. Consequently, card (tr(γ) ∩ tr(γ2)) ≥ 3.

Lemma 2.1.5 yields γ = γ2, a contradiction.

The characterization of left and right extremal directions of the feasible direction sets

by alternating sequences enables the examination of further properties of TK(σ, a):
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Figure 33: Non-extremal visibility arcs (orange) supplying alternating sequences (a
(i)
1 , a

(i)
2 ), i = 1,2 of

length 2 (see Remark 3.3.10). The corresponding exiting direction is neither left nor right extremal as

indicated by the two black arcs and their tangent unit vectors.

3.3.12 Proposition. Let a ∈ VK(σ) ∖ tr(s) and let TK(σ, a) ≠ S1. Then TK(σ, a)
contains exactly one left and one right extremal direction.

Proof. Obviously, TK(σ, a) is not empty. It is su�cient to show the existence and

uniqueness of a left extremal direction. We prove the existence by contradiction. For

this purpose, let us assume that for every v ∈ TK(σ, a) and every neighborhood U of v in

S1 the intersection U l∩TK(σ, a) is not empty. Since TK(σ, a) is closed (cf. Lemma 3.3.4)

and locally connected (cf. Lemma 3.3.6), we get the contradiction that it equals S1.

For the proof of the uniqueness let v1 and v2 be two left extremal directions. Then by

Theorem 3.3.9 we can choose visibility arcs γi ∈ SK(σ, a, vi) and alternating sequences

(a(i)1 , a
(i)
2 ) of length 2 with right restriction points a

(i)
2 for i = 1,2. W.l.o.g a

(1)
1 and a

(2)
1

are no pseudo restriction points. Then we have a
(i)
1 ≠ a(i)2 for i = 1,2. If a

(i)
1 ≠ S(γi) for

some i = 1,2, we get card (tr(γ1) ∩ tr(γ2)) ≥ 3 and we are done. Otherwise, let w.l.o.g.

a11 = S(γ1). Since TK(σ, a) ≠ S1, the sets σK(a,w) are connected for all w ∈ TK(σ, a).
Again, it is not hard to show that γ1 and γ2 have at least three points in common, which

means that they are equal. Altogether, we obtain v1 = v2 in any case.
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3.3.13 Corollary. The feasible direction set TK(σ, a) is connected for every a ∈ VK(σ).

Proof. Follows immediately from Propositions 3.3.12 and 3.3.6.

Obviously, an exiting direction v ∈ TK(σ, a) is left and right extremal if and only if it is

an isolated point of TK(σ, a). Hence by the Corollary above we obtain:

3.3.14 Corollary. A direction v ∈ TK(σ, a) is left and right extremal if and only if

TK(σ, a) = {v}.

3.3.15 Lemma. Let a ∈ VK(σ) and v ∈ TK(σ, a) s.t. σK(a, v) is connected. For every

γ ∈SK(σ, a, v) the following properties are equivalent:

1) v ∈ ∂TK(σ, a),
2) There exists an alternating sequence (a1, a2) of γ with length 2.

Addendum: In the case of card (σ(a, v)) = ∞, this is equivalent to σK(a, v) being a

singleton.

An illustration can be found in Figure 31.

Proof. (1) ⇒ (2) follows from Theorem 3.3.9 and the implication (2) ⇒ (1) from

Lemma 3.3.11. From the Inclusion-Lemma 3.2.7 we can easily deduce the equivalence

of (2) and that σK(a, v) is a singleton.

3.3.16 Corollary. Let a ∈ VK(σ) and v ∈ TK(σ, a)○ s.t. σK(a, v) is connected. Then

there exists a visibility arc γ ∈SK(σ, a, v) having neither a left nor a right restriction.

Proof. Let us �rst suppose that card (σ(a, v)) = ∞. Since v is not an extremal direction

and σK(a, v) is connected, we obtain card (σK(a, v)) = ∞ by Lemma 3.3.15. Hence

the Inclusion-Lemma 3.2.7 yields the existence of a visibility arc γ ∈SK(σ, a, v) having
neither a left nor a right restriction. If σ(a, v) is a singleton, there exist a visibility arc

γ with {γ} = SK(σ, a, v) which has a pseudo restriction at S(γ). Hence we obtain the

assertion directly by Lemma 3.3.15.
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3.4 Characterization of the Visibility Set VK(σ)

With the aid of the two instruments alternating sequences and feasible directions cones

we are able to characterize the set VK(σ). Some of the results we present in this section

have already been published ([22, 54]). But they were only treated in the context of

visibility problems within simple polygons as starting channels.

In the previous sections we have seen that we can choose visibility arcs γ with A(γ) ≥ 1

for a �xed endpoint a ∈ VK(σ) and exiting direction v ∈ TK(σ, a). If v is extremal, we

can even require an alternating number of at least two as two of the three degrees of

freedom have been driven to an extremal position. Visibility arcs ending in a point of

the boundary of VK(σ) with respect to the relative topology on IK are called blocking

arcs. We prove in Lemma 3.4.1 that blocking arcs have at least three alternating restric-

tions as already indicated in Figure 17 in Section 3.1. This allows us to describe them

in an e�cient manner and to enable a constructive approach in view of developing an

algorithm. Again, we can see the correlation of the degrees of freedom and the alternat-

ing number. Blocking arcs exhaust all degrees and therefore they have an alternating

sequence of length 3.

A proof of the claim made in Theorem 3.4.7 in a restricted case1 can also be found in

[22]. But the appearance of pseudo restrictions is missing there. Therefore, some of the

main results of Chou et al. are not correct in full generality.

Since VK(σ) is (path-)connected and compact, it is su�cient to describe all the blocking

arcs in order to characterize the whole circular visibility set. Hence the characterization

of the blocking arcs by alternating sequences is one of the main results of this section.

An example is given in Figure 34. In case of a destination channel, we will focus on one

special blocking arc, namely that one which is `nearest' to the destination segment d.

But before we can present Theorem 3.4.7, we need some auxiliary propositions in ad-

vance.

3.4.1 Lemma. Let a ∈ VK(σ), v ∈ TK(σ, a) and γ ∈ SK(σ, a, v) be a corresponding

visibility arc with tr(γ) ∩K ⊂ {a}. Then γ touches K in a or v ∈ TK(σ, a)○.

Proof. Suppose that γ doesn't touch K in a. Since tr(γ) ∩K ⊂ {a}, we have A(γ) ≤ 1.

Thus, by Theorem 3.3.9 v is not a boundary direction, and we obtain v ∈ TK(σ, a)○.
1The claim there is limited to a polygonal starting channel (K,s, σ) with s supposed to be a line and

not a generalized arc.
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s

Figure 34: Example of a circular visibility set (white portion) with respect to a starting channel. The

corresponding blocking arcs (orange) have an alternating number of at least three.

3.4.2 Lemma. For a ∈ VK(σ) with card (TK(σ, a)) = 1 we have card (SK(σ, a)) = 1.

Proof. Let TK(σ, a) = {v} for some v ∈ S1. Since σK(a, v) has at most two connected

components (cf. Proposition 3.2.10), we have N ∶= card (SK(σ, a)) ∈ {1,2,∞}. If we

assume N = ∞, there would be a visibility arc γ ∈SK(σ, a, v) without any restriction. In
particular, γ wouldn't touch K and Lemma 3.4.1 would yield a contradiction. If N = 2,

we would obtain TK(σ, a) = S1, which is also a contradiction. Hence we get N = 1.

3.4.3 Theorem. Let a ∈ VK(σ) ∖K with TK(σ, a) = {v}. Then there exists exactly one

γ ∈SK(σ, a) and we have A(γ) ≥ 3.

Proof. Since a /∈ K, the set SK(σ, a, v) = SK(σ, a) is a singleton (cf. Lemma 3.4.2).

The unique corresponding visibility arc γ is left and right extremal because v is left

and right extremal. Hence we have alternating sequences (a1, a2) and (a3, a4) of γ of

length 2, where a2 is a right restriction and a4 is a left restriction point, and we obtain

an alternating sequence (ai1 , ai2 , ai3) of length 3 with ij ∈ {1, . . . ,4}, i.e. A(γ) ≥ 3.

3.4.4 Theorem. For every a ∈ ∂VK(σ) ∖K the corresponding direction set TK(σ, a) is

a singleton, where ∂VK(σ) is built with respect to the topology on R2.
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Proof. Trivially, TK(σ, a) is not empty, i.e. it contains at least one feasible direction.

Let us assume to the contrary that card (TK(σ, a)) > 1. Since TK(σ, a) is connected (cf.

Corollary 3.3.13), we can choose a direction v from the interior of TK(σ, a). But then

there is a γ ∈SK(σ, a, v) having neither a right nor a left restriction (cf. Corollary 3.3.16)
since σK(a, v) is connected (cf. Remark 3.3.10). For continuity reasons we obtain a

whole neighborhood U that is visible, i.e. U ⊂ VK(σ), a contradiction to a being on the

boundary of VK(σ).

3.4.5 De�nition. A visibility arc γ ∈ SK(σ) is called right-blocking if there exists

a point a ∈ tr(γ) ∩ IK and a neighborhood U of a with (U r ∖ tr(γ)) ∩ VK(σ) = ∅ and

left-blocking respectively if (U l∖tr(γ))∩VK(σ) = ∅, where U l ∶= U∩Lγ and U r ∶= U∩Rγ.

We simply call γ blocking if it is left- or right-blocking.

An illustration can be found in Figure 38.

Obviously, the blocking arcs are exactly the visibility arcs γ containing boundary points

a ∈ ∂VK(σ)∖K. We will show that these arcs are exactly the arcs supplying alternating

sequences of length 3 and examine how the terms right- and left-blocking relate to

speci�c alternating sequences.

3.4.6 Remark. Let γ ∈SK(σ, a, v) for some a ∈ VK(σ), v ∈ TK(σ, a) and (a1, a2, a3) be
an alternating sequence of γ of length 3. Obviously, σK(a, v) has only one connected

component (cf. Cutting-Lemma 3.2.27).

3.4.7 Theorem.

Let a ∈ VK(σ) ∖K and γ a visibility arc with γ ∈ SK(σ, a). Then γ is right-

blocking [left-blocking] if and only if there exists an alternating sequence of

(a1, a2, a3) of γ of length 3 with a right [left] restriction point a3.

Proof. Let γ be right-blocking. Then there exists a point x0 ∈ tr(γ) ∩ IK having a

neighborhood U with (U r ∖ tr(γ)) ∩ VK(σ) = ∅. Obviously, x0 is a boundary point of

VK(σ). And we can choose an alternating sequence (a1, a2, a3) of γ ∣[S(γ),x0] of length 3

(cf. Theorems 3.4.3 and 3.4.4), which is of course also an alternating sequence of γ. If

there exists a right restriction point a4 ⪰γ a3, we are done. Therefore, let us assume to

the contrary that a2 is the maximum of all right restriction points with respect to ≺γ.
Then we are able to construct a visibility arc γ0 with an exiting direction τγ0(xs) that is
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s
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a1 = a2

a3

Figure 35: Blocking arc γ with A(γ) = 3, but only one right restriction point a2 and one left restriction

point a3. Additionally, a1 = a2 is a pseudo restriction point.

at the right to the left extremal direction τγ(xs) ∈ TK(σ,xs) for some xs ∈ [a2, a3] ending
in a point x ∈ Ur, a contradiction.

In order to show the other implication let (a1, a2, a3) be an alternating sequence of γ

of length 3 with a right restriction point a3. If we denote the connected component of

IK ∖ [a2, a3]γ not containing tr(s) by C, we can choose a point x0 ∈]a3,E(γ)[∩C and a

neighborhood U of x0 included in C. By construction every visibility arc γx of a point

x ∈ U has to cross [a2, a3]γ at some s1(x). According to Lemma 3.3.11, τγ(s1(x)) ∈
TK(σ, s1(x)) is right-extremal. Hence γx is locally left to γ in s1(x). Supposing x ∈ Ur,
γx is locally right to γ in x and there must be an intersection s2(x) ∈]a3,E(γ)]γ ∩ tr(γx)
with τγx(s2(x)) right to τγ(s2(x)). But again by Lemma 3.3.11 τγ(s2(x)) ∈ TK(σ, s2(x))
is right-extremal, a contradiction.

Since blocking arcs are characterized by alternating sequences of length 3, they can be

described in an e�cient manner. Although the notation di�ers from our terminology

and s is supposed to be a line segment and not a generalized arc within a polygon,

results similar to the following corollary can be found in [22]. Note that the treatment

of pseudo restrictions is missing there. Therefore, the results in [22] are not correct in

full generality: Chou et al. claim that a blocking arc always has three distinct `supports'

which are in particular alternating left and right restrictions but not a pseudo restriction.

However, Figure 35 illustrates an example with a blocking arc γ that has only one right

restriction a1 = a2 and one left restriction point a3. Nevertheless, we have A(γ) = 3 since

a1 is also a pseudo restriction point.
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3.4.8 Corollary.

For a ∈ VK(σ) ∖K and γ ∈SK(σ, a)
the following is equivalent:

1) a ∈ ∂VK(σ),
2) TK(σ, a) is a singleton,

3) SK(σ, a) = {γ} and A(γ) ≥ 3,

4) γ is a blocking arc.

Proof. The implication `1) ⇒ 2)' is shown in Theorem 3.4.4 and `2) ⇒ 3)' in Theo-

rem 3.4.3. From Theorem 3.4.7 the implication `3) ⇒ 4)' can be deduced and `4) ⇒ 1)'
follows directly from the de�nition of a blocking arc.

The terms `right-blocking' and `left-blocking' are not mutually exclusive. There are

examples of blocking arcs which are left- and right-blocking (cf. Figure 38). By Theo-

rem 3.4.7 these arcs can be characterized as follows:

3.4.9 Corollary. A visibility arc γ is left- and right-blocking if and only if A(γ) ≥ 4.

Proof. Follows immediately from Theorem 3.4.7 and Corollary 3.4.8.

Furthermore, we can easily deduce:

3.4.10 Corollary. Let C be a connected component of IK ∖VK(σ). Up to set inclusion

in IK there exists exactly one blocking arc γ with C ∩ VK(σ) ⊂ tr(γ).

Proof. Let γ be a blocking arc with tr(γ)∩C ≠ ∅ whose trace is maximal with respect to

inclusion in IK . Let (a1, a2, a3) be an E(γ)-adapted sequence of γ. SinceM ∶= C∩VK(σ)
is connected, we can deduce from Corollary 3.4.8 that M ⊂ [a3,E(γ)]γ.

As a consequence, we obtain:

3.4.11 Corollary. There exist arcs γ1, . . . , γm ∈SK(σ) with ∂VK(σ) ∖K ⊂
m

⋃
i=1

tr(γi).

Proof. Corollary 3.4.10 yields that every connected component of ∂VK(σ)∖K is a subset

of tr(γ) for some γ ∈ SK(σ). Since ∂VK(σ) ∖K is a bounded semi-analytic set, the

number of its connected components is �nite (cf. [13], Corollary 2.7).

In particular, VK(σ) is bounded by an arc spline if K is the trace of an arc spline. In

order to deal with these blocking arcs γ1, . . . , γm, the following de�nition is useful:
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3.4.12 De�nition. Let us assume the situation given in Corollary 3.4.10. For an

arbitrary subset M ⊂ C, we denote the unique blocking arc γ with C ∩ VK(σ) ⊂ tr(γ)
which is maximally extended in IK by γ(M). We say γ(M) is associated with M . The

restriction ω(M) ∶= γ(M) ∣C∩VK(σ) is called the window of M . If M ∶= {a} is a singleton,

we use the abbreviations γ(a) and ω(a) instead of γ({a}) and ω({a}).

Note that for all x ∈ C the corresponding blocking arcs γ(x) equal each other (see

Figure 36 and 38).

We now introduce another useful de�nition concerning maximal alternating sequences

(cf. De�nition 3.2.19).

3.4.13 De�nition. Let a ∈ IK ∖ VK(σ). An alternating sequence (a1, a2, a3) of γ(a) of

length 3 is called a-adapted if it is maximal with respect to a3 and a3 = S(ω(a)) (cf.

De�nition 3.2.19).

By this de�nition (a1, a2, a3) is uniquely determined. An illustration can be found in

Figure 36.

3.4.14 De�nition. Let a ∈ IK∖VK(σ) and let (a1, a2, a3) be the corresponding a-adapted
sequence. Then we de�ne the subset

V a
K(σ) ∶= {x ∈ VK(σ) ∖ tr(s) ∣ ∀γ ∈SK(σ,x) ∶ tr(γ) ∩ [a2, a3]γ(a) ≠ ∅} .

of VK(σ) (see Figure 36).

3.4.15 Remark. If a ∈ IK ∖ VK(σ) and A(γ(a)) = 3, the set V a
K(σ) is the connected

componentD of VK(σ)∖[a2,E(γ(a))]γ(a) which doesn't contain tr(s). In any case, the set
σK(x, v) is connected for all x ∈ V a

K(σ) and v ∈ TK(σ, x) by the Cutting-Lemma 3.2.27.

Furthermore, it is not hard to prove that V a
K(σ) is compact if and only if a2 /∈ tr(s).

This might only appear if a1 is a pseudo restriction point. An example is depicted in

Figure 37.

In the case of start-destination channels, the blocking arcs that correspond to the des-

tination d are denoted by an extra notion according to the de�nitions in [73, 4, 54]:

3.4.16 De�nition. Let D ∶= (K,s, σ, d) be a start-destination channel and let d not be

circularly visible, i.e. SK(σ, a) = ∅ for all a ∈ tr(d). Then we set γD ∶= γ(tr(d)) and

ωD ∶= ω(tr(d)). The blocking arc γD is said to be associated with ωD and ωD is called

the window of D (cf. Figure 38).
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Figure 36: Illustration of the a-adapted alternating sequence a1 ≺ a2 ≺ a3. The subset V
a
K(σ) = V bK(σ)

of VK(σ) is indicated by the shaded portion.
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Figure 37: Illustration of the a�adapted alternating sequence a1 = a2 ≺ a3 in case of a degenerate

continuation channel. The subset V aK(σ) ⊂ VK(σ) is indicated by the shaded portion. In this example

we have a1 = a2 ∈ tr(s).
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d

ωD

γD

a γ(a)
b γ(b)

c

γ(c)

IK ∖ VK(σ)

IK ∖ VK(σ)

VK(σ)

Figure 38: Illustration of a visibility set in a start-destination channel D ∶= (K,s, σ, d). The the set of

points which is not circularly visible with respect to D is shaded. The dashed arcs are the blocking arcs

associated with a, b, c and the destination d respectively. They supply alternating sequences of length 3

(cf. Theorem 3.4.7). The arcs γ(a), γ(b) and γ(c) are all left-blocking. The solid part of γD (orange

arc) illustrates the window ωD. The corresponding associated arc γD is left- and right-blocking.

We now present some further de�nitions and results regarding a start-destination channel

D ∶= (K,s, σ, d) . For our algorithmic approach the following terms are useful:

3.4.17 De�nition. Let wl and wr be the arc length parametrization of Kl and Kr,

with starting points in tr(s). For every x ∈ Kl we set lK(x) ∶= len (wl ∣[S(wl),x]) and

analogously for x ∈Kr rK(x) ∶= len (wr ∣[S(wr),x]).

By abuse of notation, we then de�ne the maximal left length and maximal right

length of a visibility arc γ ∈SK(σ) as follows:

lK(γ) ∶= max{lK(x) ∈R ∣ x ∈ tr(γ) ∩Kl} and rK(γ) ∶= max{rK(x) ∈R ∣ x ∈ tr(γ) ∩Kr} ,

where max∅ is set to 0.

Since we assumed tr(d) to be disjoint from VK(σ), the maximal left and right length

of each visibility arc in VK(σ) is strongly bounded by the length of Kl and Kr. Every

blocking arc has at least three alternating restrictions and passes through the two points

corresponding to its maximal left and right length. The window is associated with the

visibility arc that goes `furthest':
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Figure 39: Illustration of a left and right sub-curve of a start-destination channel (K,s, σ, d) given by

a polygon. For the visibility arc γ the equations lK(γ) = lK(a3) and rK(γ) = rK(b) hold.

3.4.18 Theorem (Window characterization I). For the blocking arc γD we obtain:

lK(γD) = max{lK(γ) ∈R ∣ γ ∈SK(σ)} and rK(γD) = max{rK(γ) ∈R ∣ γ ∈SK(σ)}.

Proof. Denoting the connected component of IK ∖VK(σ) which contains tr(d) by C, we
have

max{lK(γ) ∈R ∣ γ ∈SK(σ)} = len (wl ∣[S(wl),min(C∩Kl)]
) and

max{rK(γ) ∈R ∣ γ ∈SK(σ)} = len (wr ∣[S(wr),min(C∩Kr)]
) .

However, VK(σ) ∩C is trivially a subset of tr(ωD).

We now give a more e�cient characterization of the window relating to our algorithmic

approach. The local property `left' and `right' in the de�nition of alternating sequences

can be replaced by a global one in the case of the window. The alternating restrictions

de�ning the window are described due to the left and right channel Kl and Kr. We can

even show:

3.4.19 Theorem (Window characterization II).

There are points a1, a2, a3, a4 ∶= E(ωD) of tr(γD) s.t. (ai)1≤i≤3 is

an alternating sequence of length 3 of γD and

i) either a2, a4 ∈Kl and a3 ∈Kr

ii) or a2, a4 ∈Kr and a3 ∈Kl.

In case i) γD is right-blocking and in case ii) left-blocking.

Addendum: γD is uniquely determined by the conditions above.
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Figure 40: Illustration of Theorem 3.4.19. All con�gurations of alternating sequences representing the

right-blocking case are illustrated. The local and global terms 'left' and `right' equal as formulated in

the theorem.

Proof. W.l.o.g. let γD be right-blocking. By de�nition we can choose an alternating

sequence a1, a2, a3 with a3 ∈ Kr and a4 ∶= E(ωD) ∈ Kl. Hence we have L(γD) ⊂ Kl and

R(γD) ⊂Kr and therefore a2 ∈Kl.

On the one hand, only the connected component C containing tr(d) satis�es Kl ∩ C ≠
∅ ≠Kr ∩C. On the other hand, we have C ∩ VK(σ) ⊂ tr(γD). Thus, also the addendum

follows.

We have discussed the properties of VK(σ) on the assumption that tr(d) is not circularly
visible. The development of the blocking arcs and the window are crucial for this

purpose. If we consider tr(d) and VK(σ) not to be disjoint, the term `window' is not

generally well-de�ned any longer. However, we have the following property:

3.4.20 Lemma. Let VK(σ) ∩ tr(d) be non-empty. Then there exist a visibility arc

γ ∈SK(σ, d) and points a1, a2, a3 of tr(γ) s.t. one of the following conditions holds:

1) (a1, a2, a3) is an alternating sequence of length 3.

2) (a1, a2) is an alternating sequence of length 2 and a3 = E(γ) with a3 ∈ Ext(d).
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Figure 41: Illustration of Lemma 3.4.20. In the left and the right case γ has an alternating sequence

of length 3, while a3 on the right can only be chosen to be an element of tr(d). In the middle a3 can

only be chosen to be the endpoint of γ with a3 ∈ Ext(d). In this example d is even linearly visible.

Proof. If Ext(d) ∩ VK(σ) ≠ ∅, we have SK(σ, a, v) ≠ ∅ for some a ∈ Ext(d) ∩ VK(σ)
and v ∈ ∂TK(σ, a) since TK(σ, a) ⊂ (−TIK(a)) ∩ S1 ≠ S1. Hence by Theorem 3.3.9 we

can choose a visibility arc γ ∈ SK(σ, a, v) with A(γ) ≥ 2. If Ext(d) ∩ VK(σ) is empty,

VK(σ) ∩ tr(d) is a generalized arc and certainly there is a point a ∈ Ext(VK(σ) ∩ tr(d)).
But then the arc γ ∈ SK(σ, a) has to be a blocking arc. Therefore, we obtain by

Theorem 3.4.8: A(γ) ≥ 3.

In general, the visibility arc γ in the lemma above is not unique. Di�erent situations of

such an oriented arc γ are illustrated in Figure 41.
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3.5 Continuity Properties of TK(σ,−)

Throughout this section let (K,s, σ) be an arbitrary tolerance channel. In order to be

able to characterize the n-visibility set V n
K(σ) with n > 1, we �rst have to work out the

behavior of the feasible direction sets, when the corresponding points are varied. The

continuity properties of TK(σ, a) are crucial for examining the V n
K(σ) (see Section 3.6).

Our idea will be to use the continuity properties of the feasible direction sets and the

intermediate value theorem in order to give an equivalent condition when an oriented

arc can be joined with a predecessor visibility spline. It will turn out that this leads to

a continuation channel. Hence we can use the results of Section 3.4 iteratively.

The following notion is useful in order to examine the continuity properties of the feasible

direction sets:

3.5.1 De�nition. By abuse of notation we de�ne the mapping

TK(σ,−) ∶ VK(σ) ∖ tr(s) → K(S1), a↦ TK(σ, a)

that assigns its feasible direction set to every circularly visible point.

TK(σ, a) is not empty for all a ∈ VK(σ) ∖ tr(s) and compact by Lemma 3.3.4. Thus,

TK(σ,−) is well-de�ned. Let us now establish the continuity properties of a↦ TK(σ, a).
First we show the upper semi-continuity, which is relatively easy to prove. We will see

later on that TK(σ,−) is not lower semi-continuous on VK(σ) but only on a subset. For

the veri�cation of the lower semi-continuity we will need more technical e�ort. However,

we �rst show:

3.5.2 Lemma.

TK(σ,−) is upper semi-continuous.

Proof. Since VK(σ) × S1 is compact and VK(σ) ∖ tr(s) is locally compact, it is su�cient

to show that for every compact subset M ⊂ VK(σ) ∖ tr(s) the set graph(TK(σ,−) ∣M) ∶=
{(a, v) ∈M × S1 ∣ v ∈ TK(σ, a)} is closed (cf. Lemma 2.2.5). Let (an, vn)n∈N be a sequence

in graph(TK(σ,−) ∣M) converging to a pair (a, v). Since M is compact, a is included

in M . For all n ∈ N we can choose a visibility arc γn ∈ SK(σ, an, vn). Furthermore,

we have a subsequence of (tr(γn))n∈N which converges to a compact set of IK . Since

dist(a, tr(s)) > 0, by Lemma 2.5.26, we can assume the limit point given by tr(γ) for
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some γ ∈ SK(σ, a), and we have τγ(a) = ±v. Therefore, we even get τγ(a) = v because

of the convergence of (tr(γn))n∈N. But this means γ ∈ SK(σ, a, v), and hence we have

(a, v) ∈ graph(TK(σ,−) ∣M), which concludes the proof.

Since we need the lower semi-continuity just for a subset of VK(σ), we focus on the set

of all circularly visible points a where σK(a, v) has only one connected component for all

v ∈ TK(σ, a). Dealing with the whole set of circularly visible points would be somewhat

clumsy.

3.5.3 De�nition. Let us denote the subset of all circularly visible points a ∈ VK(σ)∖tr(s)
where σK(a, v) is connected for all v ∈ TK(σ, a) by V con

K (σ).

By Remark 3.4.15 we can deduce the following set inclusion:

⋃
a∈IK∖VK(σ)

V a
K(σ) ⊂ V con

K (σ) ∪ tr(s)

since V a
K(σ) ⊂ V a

K(σ) ∪ tr(s).
Note: If (K,s, σ) is a degenerate starting channel, we obviously get the set equation

V con
K (σ) = VK(σ) ∖ tr(s) (cf. Figure 38).

We now show that the mapping TK(σ,−) is lower semi-continuous at all points of V con
K (σ)

except for the vertices of K. For this purpose, we distinguish between three cases: First

we focus on points a ∈ V con
K (σ) ∖ K and interior directions v ∈ TK(σ, a)○. Next, we

take smooth points on the boundary K ∩ V con
K (σ) and interior directions into account.

Eventually, the enhancement to boundary directions can be deduced by a 'diagonal

trick'.

3.5.4 Lemma. For every a ∈ V con
K (σ) ∖K and v ∈ TK(σ, a)○ we obtain:

∀ε > 0 ∃δ > 0 ∀x ∈ Bδ(a) ∩ VK(σ) ∃w ∈ TK(σ,x) ∶ ∥v −w∥ < ε.

Proof. Since σK(a, v) has only one connected component and v is not an extremal

direction, by Corollary 3.3.16 there exists a visibility arc γ0 ∈SK(σ, a, v) having neither
a left nor a right restriction. Thus, by Lemma 3.2.26 there exists a δ > 0 providing that

SK(σ,x, v) ≠ ∅ and hence v ∈ TK(σ,x) for all x ∈ Bδ(a). In particular, the claimed is

satis�ed.

Before we can address smooth points on K, we need some elementary geometric propo-

sitions in advance.
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3.5.5 Proposition. Let r ∈]12 ,∞[ and x ∶= (ξ1, ξ2)T ∈ R × (R ∖ {0}) with ∥x∥ = r and

∥x − re1∥ = 1, where e1 ∶= (1,0)T ∈R2. Then the equation

∥re1 + sgn(ξ2) ⋅ e2 − x∥2 = 2 −
√

4 − r−2

holds, where e2 ∶= (0,1)T ∈R2.

An illustration can be found in Figure 42 on the left.

Proof. Since ξ21 +ξ22 = r2 and (ξ1−r)2+ξ22 = 1, we obtain −2ξ1r+2r2 = 1, i.e. 2r(r−ξ1) = 1

and ξ22 = 1 − 1
4r2 =

1
4(4 − r−2). Therefore, the equation

∥re1 + sgn(ξ2) ⋅ e2 − x∥2 = (ξ1 − r)2 + (ξ2 − sgn(ξ2))2 = 1 − 2 ⋅ ξ2 ⋅ sgn(ξ2) + 1 = 2 −
√

4 − r−2

holds.

We introduce some useful notions before we formulate the next auxiliary proposition.

3.5.6 De�nition. For each point a ∶= (ξ1, ξ2)T ∈ R2 ∖ {0} we introduce the unit vector

a⊥ ∶= ∥a∥−1 ⋅(−ξ2, ξ1)T which is orthogonal to a with det(a, a⊥) > 0. Assuming an arbitrary

vector w ∈R2, we set a(w) ∶= sgn⟨w∣a⊥⟩ ⋅ a⊥.
Furthermore, we set for any a ∈R2 and r > 0: Sr(a) ∶= {x ∈R2 ∣ ∥x − a∥ = r}.

3.5.7 Proposition. If r > 1
2 and a ∈ R2 with ∥a∥ = r, then we obtain for all w ∈ Sr(a)

with ∥w∥ ≤ 1:

∥w − ∥w∥a(w)∥2 = (2 −
√

4 − ∥w∥2 r−2) ∥w∥2 .

An illustration can be found in Figure 42 on the right.

Proof. The assertion is trivial if w vanishes, so let w ≠ 0. Setting rw ∶= r
∥w∥

and u ∶= w
∥w∥

,

we have u ∈ S1 and a
∥w∥

∈ Srw(0). After possible rotation we can assume w.l.o.g. that

a
∥a∥ = −e1. We then get a⊥ = −e2 and a(w) = sgn(w2) ⋅ e2, where w2 denotes the second

coordinate of w. Furthermore, we have − a
∥w∥

= ∥a∥
∥w∥
e1 = rwe1. Setting x ∶= u − a

∥w∥
, we

obtain

∥x∥ = ∥u − a

∥w∥
∥ = 1

∥w∥
∥w − a∥ = r

∥w∥
,

i.e. x ∈ Srw(0). Consequently, we have ∥x − rwe1∥ = ∥u∥ = 1. Denoting the second

coordinate of x by x2, we can deduce from Proposition 3.5.5:

∥u − a(w)∥2 = ∥x − rwe1 − sgn(w2) ⋅ e2∥2 = ∥x − rwe1 − sgn(x2) ⋅ e2∥2 =

2 −
√

4 − r−2w = 2 −
√

4 − ∥w∥2 r−2.
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0 re1

x re1 + sgn(ξ2)e2

0 r a

w

∥w∥a(w)

Figure 42: Illustration of Proposition 3.5.5 (left) and 3.5.7 (right).

Therefore, we have ∥w − ∥w∥a(w)∥2 = ∥u − a(w)∥2 ∥w∥2 = (2 −
√

4 − ∥w∥2 r−2) ∥w∥2 .

From this proposition we conclude:

3.5.8 Proposition. Let r0 > 0, C be an open cone in R2 and v ∈ C ∩ S1. Given a

compact subset K of C, there exists a δ > 0 satisfying the following condition: If γ is an

oriented arc with κ(γ) < 1
r0

ending in 0 ∈ R2 with exiting direction v ∈ K ∩ S1, we have

tr(γ) ∩Bδ(0) ⊂ −C ∪ {0}.

Proof. We set d ∶= dist(K,R2 ∖ C). Since lim
ε→0

√
1 − ε2

4r20
= 1, there exist a δ > 0 and an

oriented arc γ s.t.

i) ⟨x∣v⟩ < 0 for all x ∈ tr(γ) ∩Bδ(0)
ii)

r0
δ
> 1

2
iii) 1 −

√
1 − ε2

4r20
< d2

2 for all 0 < ε < δ
W.l.o.g. we can assume that κ(γ) ≠ 0, and we have r ∶= 1

∣κ(γ)∣ ≥ r0. Setting a ∶=
r ⋅ sgn(κ(γ)) ⋅ v⊥, we obtain C(γ) = Sr(a) and a(x) = −v for all x ∈ tr(γ) ∖ {0}. Hence we
get by Proposition 3.5.7:

∥x + ∥x∥ v∥2 = 2
⎛
⎜
⎝

1 − 1

√

1 − ∥x∥2

4r2

⎞
⎟
⎠
∥x∥2 < d2 ∥x∥2
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for all x ∈ (tr(γ) ∩Bδ(0)) ∖ {0}. Therefore, we have ∥ x
∥x∥ − (−v)∥ < d. Since −v ∈ K and

d = dist(−K,R2 ∖ (−C)), we obtain x
∥x∥ ∈ −C. Thus, x is included in −C.

We are now able to formulate and prove the proposition needed for examining the lower

semi-continuity on smooth points a ∈K ∩ V con
K (σ):

3.5.9 Proposition. Let κ ∈]0,∞[, C be an open cone in R2 and v ∈ S1 with d ∶=
dist(−v,R2 ∖C) > 0. Then there exists a δ > 0 s.t. for all w ∈ (−C)∩S1 with ∥v −w∥ < d

2

and arcs γ ∈ S ending in x ∈ R2 with exiting direction w and ∣κ(γ)∣ < κ we have

tr(γ) ∩Bδ(x) ⊂ x +C.

Proof. Follows immediately from Proposition 3.5.8.

In order to prove the lower semi-continuity at smooth points a ∈K∩V con
K (σ), we slightly

extend the given channel (K,s, σ) s.t. a is an interior point of the extended channel (cf.

Lemma 3.1.13). Combining Lemma 3.5.4 and Proposition 3.5.9, we are able to show:

3.5.10 Proposition. Let a ∈ (V con
K (σ) ∩K) be a smooth point and v ∈ TK(σ, a)○ an

interior direction. Then for all ε > 0 there exists a neighborhood U of a s.t. for all x ∈ U
there is a direction vx ∈ TK(σ,x) with dist(v, vx) < ε.

Proof. Let ε > 0. We have 0 < d ∶= dist (v,R2 ∖ TK(σ, a)) ≤ dist (−v,R2 ∖ TIK(a)) and

set ρ ∶= dist(a, tr(s)) > 0. First we claim the existence of some δ > 0 satisfying

1) −v ∈ C ∶= ⋂
x∈Bδ(a)∩VK(σ)

TIK(x).

2) The canonical extension (K̃, s, σ) of (K,s, σ) given by IK̃ = IK ∪Bδ(a) is a tolerance
channel.

3) For all x ∈ Bδ(a) and w ∈ S1 with ∥v −w∥ < d
2 and for all γ ∈ S(σ, a,w) we have

tr(γ) ∩Bδ(a) ⊂ x +C.

Since a is a smooth point, the mapping x ↦ TIK(x) is continuous on Bδ(a) ∩ K for

su�ciently small δ. Thus, after possible diminution of δ we have

dist(TIK(x) ∩ S1, TIK(a) ∩ S1) < d
2

and therefore dist (−v,R2 ∖ TIK(x)) < d
2 . Hence we obtain 1). Property 2) can be

satis�ed because (K,s, σ) is a tolerance channel (cf. Lemma 3.1.13). Part 3) of the
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claim follows directly from Proposition 3.5.9, when choosing δ < ρ, since v is contained

in the open cone C○ and

∀x ∈ Bδ(a) ∩ VK(σ)∀γ ∈S(σ,x) ∶ ∣κ(γ)∣ ≤ 2

ρ − δ
.

Then it is easy to see that a ∈ VK̃(σ) since VK(σ) ⊂ VK̃(σ). Furthermore, we have

VK̃(σ) ∖Bδ(a) ⊂ VK(σ) and TK(σ,x) ⊂ TK̃(σ,x) for all x ∈ VK(σ). Since a is an interior

point of VK̃(σ), we obtain using Lemma 3.5.4 with respect to the tolerance channel

(K̃, s, σ): There exists a neighborhood Ũ of a in VK̃(σ) s.t. for all x ∈ Ũ there exists a

direction vx ∈ TK̃(σ,x) with
∥v − vx∥ < min(ε, d

2
) .

Now it remains to show that for all x ∈ U ∶= Ũ ∩ VK(σ) the direction vx is contained

in TK(σ,x). For this purpose, let x ∈ U and γ ∈ SK̃(σ,x, vx). In particular, we have

γ ∈S(σ,x) and therefore ∣κ(γ)∣ < 2
ρ−δ . Hence by 3) tr(γ) ∩Bδ(x) ∩Bδ(a) is included in

(x + C) ∩ Bδ(a), which is obviously a subset of IK . Otherwise, we have IK̃ ∖ Bδ(a) =
IK ∖ Bδ(a) and tr(γ) ∖ (Bδ(x) ∩Bδ(a)) ⊂ IK . Therefore, tr(γ) ⊂ IK and so we have

vx ∈ TK(σ,x) and ∥v − vx∥ < ε by construction, thus completing the proof.

Summarizing the particular results, we are able to show that TK(σ,−) is lower semi-

continuous on VK(σ) ∩ IK and at smooth points of K:

3.5.11 Lemma.

TK(σ,−) is lower semi-continuous on V con
K (σ) ∖ K

and at all smooth points of V con
K (σ) ∩K.

Proof. Let a ∈ V con
K (σ) be not a vertex of K and v ∈ TK(σ, a). Let (an)n∈N be a sequence

in VK(σ) convergent to a and ε > 0. Since TK(σ, a) is connected, either its interior is

not empty or TK(σ, a) is a singleton. If v ∈ TK(σ, a)○, we obtain by Lemma 3.5.4 and

Proposition 3.5.10:

∃N ∈N ∀n > N ∃vn ∈ TK(σ, an) ∶ ∥v − vn∥ < ε.

Let us now focus on a boundary direction v ∈ ∂TK(σ, a). Since TK(σ, a) has no isolated

points (cf. Corollary 3.3.13), we can deduce:

∀m ∈N ∖ {0} ∃vm ∈ (TK(σ, a))○ with ∥v − vm∥ < 1

m
.
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Assuming an arbitrary sequence (an)n∈N converging to a and an integer m ∈ N ∖ {0},
likewise we obtain a sequence (vn,m)n∈N with vn,m ∈ TK(σ, an) which is convergent to vm

because vm is an interior direction. Apart from that, we have lim
m→∞

vm = v. Therefore,

we obtain the convergence of (vn,n)n∈N to v with vn,n ∈ TK(σ, an), which concludes the

proof in the case of a point a with card (TK(σ, a)) > 1.

Let TK(σ, a) now be a singleton, for instance TK(σ, a) ∶= {v}. Considering an arbitrary

ε > 0 and a sequence (an)n∈N in VK(σ) convergent to a, there exists a bound N ∈ N
s.t. TK(σ, an) ⊂ Bε(TK(σ, a)) = Bε(v) for all n ≥ N because TK(σ,−) is upper semi-

continuous at a (cf. Lemma 3.5.2). In particular, we can choose a vn ∈ TK(σ, an) with

∥v − vn∥ < ε for all n ≥ N . Hence we obtain a sequence (vn)n∈N converging to v and

we have shown the lower semi-continuity in points whose direction set is a singleton as

well.

Altogether, we obtain directly:

3.5.12 Corollary.

TK(σ,−) is continuous on V con
K (σ) except for the vertices of K.

Proof. By Lemma 3.5.2 TK(σ,−) is upper semi-continuous on V con
K (σ). Furthermore, it

is lower semi-continuous on V con
K (σ) ∖K and at all smooth points of V con

K (σ) ∩K by

Lemma 3.5.11 .

3.5.13 Example. In Figure 43 the direction sets of some circularly visible points are

depicted to outline the continuity attitudes of the mapping TK(σ,−).
Note that the direction set at a vertex can abruptly increase but not abruptly shrink

when approaching the vertex since TK(σ,−) is at least upper semi-continuous. Further-

more, it is illustrated that TK(σ,x) is steadily getting smaller when approaching the

boundary of VK(σ) and on ∂VK(σ) it is just a singleton (cf. Theorem 3.4.4).
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s

a0

aV a
K(σ) ⊂ V con

K (σ)

Figure 43: The continuity attitude of the mapping TK(σ,−) is indicated by the small 'pie slices' that

shall visualize the sets TK(σ,x) in the points x ∈ V conK (σ). At the vertex a0 one can see a point of

discontinuity.
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3.6 Characterization of the n-Visibility Set V n
K(σ)

Throughout this section let E ∶= (K,s, σ) be an arbitrary tolerance channel.

We give a characterization of the n-visibility set V n
K(σ). As already indicated, V n

K(σ)
contains the set of all points that can be reached by a smooth arc spline with n segments,

n > 1. We will see that V 2
K(σ) ⊃ {a ∈ IK ∣ S2

K(σ, a) ≠ ∅}, but in general these sets are

not equal (cf. Figure 53). The introduction of tolerance channels enables us to focus

on the case n = 2 and to argue by induction subsequently. Unfortunately, the set

V 2
K(σ) ∖ VK(σ) is not simply the set of all end points a ∈ IK of visibility splines with

two segments of which the �rst segment is a restriction of the corresponding blocking

arc γ(a) (cf. De�nition 3.4.12), i.e.

V 2
K(σ) ≠ {a ∈ IK ∣ ∃γ1γ2 ∈S2

K(σ, a) s.t. C(γ1) = C(γ(a))} .

A counterexample is depicted in Figure 44:

γ(a)

a

Figure 44: Visibility splines of V 2
K(σ). The solid visibility spline is composed of a blocking arc γ(a) and

another arc. There is no arc that can be joined smoothly to γ(a) reaching the point a, but the dashed

arc spline (orange) is a visibility spline of a, i.e. a ∈ V 2
K(σ).

In order to characterize the set V 2
K(σ), we examine conditions in which an arbitrary

arc can be smoothly joined to a visibility arc. The properties of the mapping TK(σ,−)
worked out previously are used for this purpose. It will turn out that V 2

K(σ) can be

computed by examining certain continuation channels which can be de�ned by blocking

arcs γ(a) for points a ∈ IK ∖ VK(σ). Then we will be able to proceed inductively and

again de�ne certain continuation channels to characterize the 3-, 4-,..., n-visibility set.



3. Mathematical Modeling and Results 103

γ0

γ1

γ2

y1

y2x0

x1
x2

a or a

τγ1(x0)

Figure 45: Illustration of the Homotopy-Lemma 3.6.1.

First we state a lemma proved with homotopy techniques. By combining this lemma with

the continuity properties of the feasible direction sets, we give an equivalent condition

when an oriented arc γ within IK can be smoothly joined to a visibility arc of (K,s, σ).
The idea is stated as follows: Considering two points x1 and x2 of tr(γ) where the tangent
unit vector τγ(x1) is `left' of TK(σ,x1) and τγ(x2) is `right' of TK(σ,x2), there must be
a point x ∈ [x1, x2]γ ∩ tr(γ) with τγ(x) ∈ TK(σ,x) by the intermediate value theorem.

Hence there exists a visibility arc smoothly joined to γ. In particular, E(γ) ∈ V 2
K(σ).

3.6.1 Lemma (Homotopy).

Let γ2 ∈ S end in a ∈ IK ∖ VK(σ), and suppose that γ1 ∈ SK(σ,x0) for a point

x0 ∈ tr(γ2) with τγ1(x0) = ±τγ2(x0). Let x1, x2 ∈ tr(γ0) ∩ tr(γ2) with x1 ≺γ0 x2 and

γ0 ∈S s.t. tr(γ(a)) ⊂ tr(γ0). Furthermore, suppose y1, y2 ∈ tr(γ1) ∩ tr(γ(a)) with

i) y1 ≺γ0 y2 and y1 ≺γ1 y2 or

ii) y1 = y2 and τγ1(y1) = τγ0(y1).
Then we have: τγ1(x0) = τγ2(x0) ⇔ x1 ≺γ2 x2.

The situation is visualized in Figure 45.
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Proof. Let w ∶ [0,1] →R2 be a parametrization of tr([x2, x0]γ2) or tr([x0, x2]γ2) depend-
ing on whether x0 ≺γ2 x2 or x2 ≺γ2 x0 with ∥w′(t)∥ constant, w(0) = x2 and w(1) = x0.
Then for every λ ∈ [0,1] we de�ne an oriented arc γ(λ) ∈S s.t.

i) S(γ(λ)) = y1 and E(γ(λ)) = w(λ)

ii) y2 ∈ tr(γ(λ)) or τγ(λ)(y1) = τγ0(y1) if y1 = y2.

Setting Cλ ∶= C(γ(λ)) and X(λ) ∶= tr(γ(λ)) ∩ tr(γ2), we claim the following:

1) C0 = C(γ0) and C1 = C(γ1),

2) The mapping [0,1] → K(R2), λ↦ tr(γ(λ)) is continuous.

3) card (X(λ)) = 2 for every λ < 1 and card (X(1)) = 1.

It is easy to verify the assertions (1) and (2). The case λ = 1 in (3) being obvious, let us

suppose λ < 1. Then Cλ ∩C(γ2) has exactly two intersections. By construction of γ(λ),

we have E(γ(λ)) ∈ X(λ) ⊂ Cλ ∩ C(γ2)). Assuming z ∈ Cλ ∩ tr(γ2) with z ∉ tr(γ(λ)), we
get a contradiction to (2).

For every λ ∈ [0,1[ we use the abbreviation x
(λ)
2 ∶= E(γ(λ)) and x

(λ)
1 is the uniquely

de�ned (cf. 3)) point included in X(λ) with x(λ)
1 ≠ x(λ)

2 . By construction, we can deduce

that the mapping

[0,1] →R2, λ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x
(λ)
i , λ < 1

x0, λ = 1

is continuous for i = 1,2. Furthermore, we set G ∶= tr([x1, x2]γ2) or G ∶= tr[x2, x1]γ2
respectively. Let w̃ ∶ [0,1] → R2 be a parametrization of G s.t. ∥w̃′(t)∥ is constant,

w̃(0) = x1 and w̃(1) = x2. Therefore, the orientation of w̃ coincides with the orientation

of G which is ed by γ0. Then parametrizations wλ of γ(λ), λ ∈ [0,1] can be chosen s.t.

[0,1]2 →R2, (λ, t) ↦ wλ(t) is continuously di�erentiable and w
′
λ(t) is constant.

Consequently, for every λ ∈ [0,1[ and i ∈ {1,2} there exist uniquely determined parame-

ters t
(λ)
i , s

(λ)
i ∈ [0,1] with wλ(t(λ)i ) = x(λ)

i and w̃(s(λ)i ) = x(λ)
i . Obviously, we can conclude:

t
(λ)
1 < t(λ)2 = 1 and s

(λ)
1 < s(λ)2 . Therefore, the mappings

τ1 ∶ [0,1] → [0,1], λ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

t
(λ)
1 + 1

2 ⋅ (t
(λ)
2 − t(λ)1 ), 0 ≤ λ < 1

t0, λ = 1
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and

τ2 ∶ [0,1] → [0,1], λ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

s
(λ)
1 + 1

2 ⋅ (s
(λ)
2 − s(λ)1 ), 0 ≤ λ < 1

t0, λ = 1

are continuous. Since the parametrizations wλ and w̃ are regular, the mappings

f1 ∶ [0,1] →R2, f1(λ) ∶=
d
dtwλ(τ1(λ))

∥ d
dtwλ(τ1(λ))∥

and

f2 ∶ [0,1] →R2, f2(λ) ∶=
d
dtw̃(τ2(λ))

∥ d
dtw̃(τ2(λ))∥

.

are well-de�ned. Furthermore, the mapping λ↦ d
dtwλ(t) is continuous for every t ∈ [0,1]

since wλ and w̃ are continuously di�erentiable. Hence f1 and f2 are continuous as well.

We now show that f1 equals f2. De�nitely, we have by Proposition 2.5.33:

f1(λ) =
x
(λ)
2 − x(λ)

1

∥x(λ)
2 − x(λ)

1 ∥
= f2(λ)

for all λ < 1. Thus, f1 and f2 are equal on the dense subset [0,1[⊂ [0,1] and therefore,

we get f1 = f2 since they are continuous. In particular, we obtain:

τγ1(x0) = f1(1) = f2(1) =
d

dt
w̃(t0).

Altogether, these results yield the following: The orientation of tr(w̃) induced by τγ1(x0)
equals the orientation on w̃ and therefore it is equal to the orientation of γ0 as well. I.e.

we have x1 ≺ x2 with respect to τγ1(x0). From this we can easily deduce both implications

of the assertion.

By means of the Homotopy-Lemma we obtain that oriented arcs which end in a point

a ∈ IK ∖ VK(σ) and can be joined to a visibility arc satisfy the continuation condition

(CC) (cf. De�nition 3.1.5). This enables an inductive approach for the examination of

V n
K(σ) for all n > 1, as we will see later on.

3.6.2 Corollary. Let a ∈ IK ∖ VK(σ) and γ1γ2 ∈ S2
K(σ, a) with C(γ1) ≠ C(γ(a)). Then

there exist x1, x2 ∈ C(γ2) ∩ tr(γ(a)) satisfying x1 ≺γ2 x2, x1 ≺γ(a) x2 and [x1, x2]γ2 ⊂ IK.
Remark: The property x1 ≺γ2 x2 is well-de�ned because xi ≠ a, i = 1,2.

Proof. Because C(γ1) does not equal C(γ(a)), we have two distinct points x1 and x2

with {x1, x2} = C(γ1) ∩ C(γ(a)). Let γ0 ∈ S be the arc with C(γ0) = C(γ(a)) starting
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γ0

γ1

γ2

y1

y2x0

x1

x2

τγ1(x0)

x
(λ)
0 x

(λ)
1

x
(λ)
2

γλ

τγλ(xλ0)

Figure 46: Illustration of the proof of the Homotopy� Lemma 3.6.1.
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in S(γ(a)), containing x1 and x2 and ending in one of these points. Likewise, we de�ne

γ̃2 ∈ S as the arc containing tr(γ2), x1 and x2, ending in E(γ2) and starting in x1

or x2. W.l.o.g. we can assume x1 ≺γ0 x2. Let x̃1 and x̃2 be the points satisfying

{x̃1, x̃2} = {x1, x2} and x̃1 ≺γ̃2 x̃2.
Claim 1: x1 = x̃1 and x2 = x̃2.
Because of the alternating properties of γ(a), we can choose an a-adapted alternating

sequence (a1, a2, a3) of length 3 of γ(a) s.t.

i) [a1, a2] ∩ tr(γ1γ2) is not empty, but x̃2 /∈ [a1, a2]γ(a) (because a /∈ VK(σ)), and
ii) [a2, a3] ∩ tr(γ1γ2) is not empty as well.

If x̃2 ∈ [a2, a3], we can set a3 = x̃2. From i) we can easily deduce by curvature reasons

that [a1, a2] ∩ tr(γ1) is not empty. Because of ii), we now have to distinguish between

two cases. If, on the one hand, we assume that γ1 does not intersect [a2, a3], we get

card ([a2, a3] ∩ tr(γ2)) = 2 since a is not circularly visible. Therefore, we have [a2, a3] ∩
tr(γ2) = {x1, x2} and because of x̃2 = a3; consequently, x̃1 ≺γ0 x̃2, which proves Claim 1.

Assuming on the other hand [a2, a3] ∩ tr(γ1) not to be empty, yields the following:

Since [a1, a2] ∩ tr(γ1) ≠ ∅ and 1 ≤ card ([a2, a3] ∩ tr(γ1)) ≤ 2, there exist exactly one

y1 ∈ [a1, a2] ∩ tr(γ1) and exactly one y2 ∈ [a2, a3] ∩ tr(γ1) satisfying either y1 ≺γ1 y2 or

y1 = y2 and τγ1(y1) = τγ(a)(y1). Hence the Homotopy-Lemma 3.6.1 yields Claim 1 for the

second case as well.

Since x2 is included in tr(γ(a)), we also have x1 ∈ tr(γ(a)) and we merely have to show:

Claim 2: [x1, x2]γ̃2 ⊂ IK
We prove this claim by contradiction. Let us assume y ∈ EK ∩ tr(γ̃2) with x1 ≺ y ≺ x2.
By precondition, [x0, x2]γ̃2 is included in tr(γ1γ2) ⊂ IK . Thus: x1 ≺γ̃2 y ≺γ̃2 x2. But now
we can construct a Jordan curve ω in IK with

tr(ω) = [y2, x0]γ1 ∪ [x0, x2]γ2 ∪ [x2, y2]γ̃,

where γ̃ is the inverse path of γ(a). By construction, y is contained in the closure of

interior of ω. Since IK is simply connected, the loop ω is contractible, which contradicts

the assumption that y ∈ EK and proves Claim 2.

Altogether, we have shown the desired properties claimed in this proposition.

We will show that, under certain conditions, the other implication is also correct, but

�rst we need a rather technical lemma exploiting the continuity attitudes of the feasible

direction sets and the determinant function:
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3.6.3 Lemma. Let (X,d) be a metric space, x0 ∈ X and σ ∈ {±1}. Furthermore, let

f ∶ X → S1 be continuous at x0 and g ∶ X → K (S1) be upper semi-continuous at x0. For

every v ∈ g(x0) we assume σ ⋅ det(f(x0), v) > 0. Then we claim:

∃δ > 0∀x ∈ Bδ(x0) ∀v ∈ g(x) ∶ σ det(f(x), v) > 0.

Proof. Since the determinant mapping is continuous regarding the matrix entries and f

is continuous at x0, the following is valid:

∃ε > 0 ∀x ∈ Bε(x0) ∀v0 ∈ Bε(g(x0)) ∶ σ det(f(x), v0) > 0.

Because of the upper semi-continuity of g at x0, there exists a 0 < δ < ε s.t. for every

x ∈ Bδ(x0) g(x) is a subset of Bε(g(x0)). In particular, we have x ∈ Bε(x0) for every

x ∈ Bδ(x0) and obviously, v ∈ Bε(g(x0)) for every v ∈ g(x0). Altogether, we obtain

σ det(f(x), v)) > 0 for every v ∈ g(x0).

Oriented arcs in IK satisfying the CC can be smoothly joined to a visibility arc. In

this case we can even choose an arc that is extremal, i.e. supplying an alternating

sequence of length 2, which is fundamental for a constructive approach and hence for

the algorithmic design. Informally speaking, we choose a breakpoint supplying a joining

tangent direction which is extremal:

3.6.4 Proposition. Given γ2 ∈ S ending in a ∈ IK ∖ VK(σ) with tr(γ2) ⊂ IK, let

x1, x2 ∈ tr(γ2) with x1 ≺γ2 x2 and tr ([x1, x2]γ2) ⊂ V con
K (σ) s.t.

i) det(τγ2(x1), v) > 0 and det(τγ2(x2),w) < 0 for all v ∈ TK(σ,x1), w ∈ TK(σ,x2)
ii) TK(σ,x) ≠ S1 for all x ∈ [x1, x2]γ2
Then there exists a point x0 ∈ [x1, x2]γ2 s.t.

1) ±τγ2(x0) ∈ TK(σ,x0) and

2) x0 is a vertex of K or det(τγ2(x0), v) = 0 for some extremal direction v ∈ ∂TK(σ,x0).

Proof. Let us denote the subset of all vertices in tr ([x1, x2]γ2) ∩ VK(σ) by X. Then X

contains all vertices which are passed through by γ2 in V con
K (σ). If there is a point x0 ∈X

and a feasible direction v ∈ TK(σ,x0) with det(τγ2(x0), v) = 0, we are done. Therefore,

let det(τγ2(x), v) ≠ 0 for all x ∈ X and v ∈ TK(σ,x). Because of property ii) and

Lemma 3.6.3, the minimum of {x ∈X ∣ det(τγ2(x), TK(σ,x2)) < 0} with respect to `≺γ2 '
exists if X is not empty. In either case, we have points x̃1 and x̃2 with x1 ≺ x̃1 ⪯ x̃2 ≺ x2
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s.t. [x̃1, x̃2]γ2 ⊂ V con
K (σ) does not contain any non-smooth point of K, and which satisfy

the inequalities

det(τγ2(x̃1), v) > 0 and det(τγ2(x̃1),w) < 0 for all v ∈ TK(σ, x̃1) and w ∈ TK(σ, x̃2)

since TK(σ,−) is upper semi-continuous (cf. Corollary 3.5.12). Let w ∶ [0,1] → R2 be a

parametrization of [x̃1, x̃2]γ2 . Then the mapping f ∶ [0,1] → R2, t ↦ l(w(t)) is a con-

tinuous selection of TK(σ,−) ∣[x̃1,x̃2]γ2 , where l(w(t)) denotes the left extremal direction

of TK(σ,w(t)). Since the two inequalities det(w(0), f(0)) > 0 and det(w(1), f(1)) < 0

hold, we obtain by continuity reasons (see Corollary 3.5.12) from the intermediate value

theorem the existence of a parameter t0 ∈ [0,1[ with det(w(t0), f(t0)) = 0, which con-

cludes the proof.

As already indicated, every blocking arc γ(a) corresponding to a point a ∈ IK ∖ VK(σ)
generates a (degenerate) continuation channel, which will be essential for our inductive

approach. In fact, we can interpret this channel as shrinking of E, where the starting

segment is given by γ(a) instead of s. A precise formulation is given in the following

de�nition:

3.6.5 De�nition. Let a ∈ IK∖VK(σ) and let C be the connected component of IK∖VK(σ)
containing a. Furthermore, let (a1, a2, a3) be the a-adapted sequence of γ ∶= γ(a). Then

γ induces a continuation channel Ea ∶= (Ka, sa, σa) in the following way:

1) If A(γ ∣[S(γ),x]) ≥ 3 for some x ∈ [a2, a3[, γ is left and right blocking, and we obtain a

degenerate continuation channel with

i) Ka = ∂C
ii) sa ∶= ω(a)

iii) σa is the degenerate unidirectional restriction of sa (cf. De�nition 3.1.4).

2) Otherwise, we can de�ne the non-degenerate channel Ea with

i) Ka de�ned by IKa = V a
K(σ) ∪C

ii) sa ∶= [a2,E(ω(a))]γ
iii) σa is the unidirectional restriction of sa (cf. De�nition 3.1.5).

We use the abbreviation σKa ∶= (σa)Ka.

An illustration of De�nition 3.6.5 can be found in Figure 47, where both cases 1) and 2)

are exempli�ed. In particular, we can see that E(sa) doesn't need to be equal to E(γ(a)),
considering the channel de�ned by b.
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s

a

a1

a2

a3

a4

ã4
b

c

VK(σ)

IKa

IKb

IKc

Figure 47: Illustration of the continuation channel (Ka, sa, σa). The alternating sequence (a1, a2, a3)

of γ(a) = γ(b) = γ(c) is a-adapted; (a2, a3, a4) is b-adapted and (a2, a3, ã4) is c-adapted. The diverse

hachures depict t he corresponding interiors of the continuation channels de�ned by a, b and c respec-

tively. Note: E(γ(a)) = E(sa) = E(sc), but E(sb) = ã4 ≠ E(γ(b)).
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3.6.6 Remark. Let us assume the second case of De�nition 3.6.5. Then IKa ∩ VK(σ)
is not a subset of V con

K (σ) if and only if a2 ∈ tr(s), which is disjoint to V con
K (σ), and

therefore TK(σ, a2) is empty. We have already seen an example indicated in Figure 37.

However, V a
K(σ) ∖ {a2} = IKa ∖ {a2} is still a subset of V con

K (σ).

The idea for characterizing V 2
K(σ) is simply to examine the properties of the set VKa(σa)

for certain points a ∈ IK ∖ VK(σ). Since VKa(σa) is a tolerance channel, the results of

Section 3.4 can be applied. We will now see that an oriented arc ending in a can be

joined smoothly to a visibility arc if and only if it satis�es the continuation condition

(CC) with respect to the blocking arc γ(a):

3.6.7 Remark. For an arbitrary arc γ ∈ S in IK ending in a ∈ V 2
K(σ) ∖ VK(σ) with

non-empty intersection tr(γ) ∩ VK(σ), the following two properties are equivalent by

de�nition:

1) There exists an arc γ̃ ∈SKa(σa, a, v) with C(γ) = C(γ̃).
2) Either there exist two intersection points x1, x2 ∈ tr(γ(a)) ∩ C(γ) with x1 ≺γ x2,

x1 ≺γ(a) x2 and [x1, x2]γ ⊂ V con
K (σ) or we have γ1γ2 ∈ S2

K(σ, a) for some γ1, γ2 with

C(γ1) = C(γ(a)) and C(γ2) = C(γ).

Note that property 2 above is the CC with respect to γ(a).

The following two theorems are the key part of the examination of V 2
K(σ):

3.6.8 Theorem (Connection).

Let γ2 ∈ S with tr(γ2) ⊂ IK ending in a ∈ IK ∖ VK(σ) and being maximally

extended in IK. Then the following two properties are equivalent:

1) There exist a breakpoint x0 ∈ VK(σ) ∩C(γ2) and a visibility arc

γ1 ∈SK(σ,x0) s.t. γ1γ̃ ∈S2
K(σ, a), where γ̃ = γ2 ∣[x0,a].

2) There exists an arc γ̃2 ∈SKa(σa, a) with S(γ̃2) /∈ tr(s) and C(γ2) = C(γ̃2).
Addendum: We can choose γ1 in (1) extremal, i.e. A(γ1) ≥ 2 or E(γ1) is

a vertex and A(γ1) ≥ 1.

An illustration can be found in Figure 48.

Proof. In any case, we necessarily have tr(γ2) ∩ VK(σ) ≠ ∅.
(1) ⇒ (2): Let us assume that property (1) is valid. If C(γ1) equals C(γ(a)), prop-
erty (2) follows immediately. If this is not the case, by Corollary 3.6.2 there exist points
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x1, x2 ∈ tr(γ2) ∩ tr(γ(a)) with x1 ≺γ2 x2, x1 ≺γ(a) x2 and [x1, x2]γ2 ⊂ IK . Assuming to

the contrary there would be a point y ∈ tr(γ2) with x1 ≺γ2 y ≺γ2 x2 and y ∉ VK(σ), this
point would clearly be 2-circularly visible. Obviously, we have x0 ≺γ2 y and therefore

γ1γ2 ∣[x0,y]∈ S2
K(σ, y). But then the orientations induced by γ(y) and γ2 on the two in-

tersection points x̃1, x̃2 ∈ tr(γ(y)) ∩ tr(γ2) would not be identical, which is contradictory

to the Homotopy-Lemma 3.6.1. Altogether, we obtain (2).

(2) ⇒ (1): By Remark 3.6.7 we can assume points x1, x2 ∈ tr(γ(a)) ∩ C(γ2)) with

x1 ≺γ2 x2, x1 ≺γ(a) x2 and [x1, x2]γ2 ⊂ VK(σ) since the case x1 = x2 is obvious. Because of
these orientation properties, we have w.l.o.g.

det (τγ2(x1), τγ(a)(x1)) > 0 and det (τγ2(x2), τγ(a)(x2)) < 0.

We now have to distinguish between two cases:

First Case: det (τγ2(x1), v) > 0 for all v ∈ TK(σ,x1).

Since TK(σ,x2) = {τγ(a)(x2)}, we obtain by the Proposition 3.6.4 the existence of a

point x0 ∈ tr(γ2) with x1 ≺γ2 x0 ≺γ2 x2 and τγ2(x0) ∈ TK(σ,x0) s.t. x0 is a vertex of K or

τγ2(x0) ∈ ∂TK(σ,x0). In particular, property (1) and the addendum follow.

Second Case: There are directions v ∈ TK(σ,x1) with det (τγ2(x1), v) ≤ 0.

Since TK(σ,x1) is connected, there exists a v ∈ TK(σ,x1) with det (τγ2(x1), v) = 0, i.e.

τγ2(x1) = ±v. By the Homotopy-Lemma we have τγ2(x1) ∈ TK(σ,x1). If x1 equals a2

within the a-adapted sequence (a1, a2, a3) of γ(a), the claimed is shown. Hence we can fo-

cus on the case `x1 ≻γ(a) a2'. In the same manner as in the proof of the Proposition 3.6.4,

we can assume the set of all vertices in K∩tr(γ2) to be empty. In any case v1 ∶= τγ(a)(x1)
is right or left extremal because x1 ≻γ(a) a2. W.l.o.g. let v1 be right extremal. Now the

mapping

r ∶ [x1, x2]γ2 → S1, x↦ r(TK(σ,x)),

where r(TK(σ,x)) denotes the uniquely determined right extremal direction of TK(σ,x),
is well-de�ned. Obviously, r is a continuous selection of the set-valued mapping

[x1, x2]γ2 → K (S1) , x↦ TK(σ,x).

Because of r(x1) = v1 and r(x2) = v2 ∶= τγ(a)(x2) and the continuity of

f ∶ [x1, x2]γ2 →R, x↦ det (τγ2(x), r(x)) ,
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a

x0 τγ2(x0) ∈ ∂TK(σ,x0)

γ2

V a
K(σ) ⊂ V con

K (σ)

sa

Figure 48: Illustration of Theorem 3.6.8. The shaded portion is the part of IK that is not circularly

visible. The arc γ2 can be joined smoothly to a visibility arc γ1 having an extremal direction at x0.

Hence γ1 can be chosen supplying an alternating sequence of length 2.

we obtain a point x0 with x1 ≺γ2 x0 ≺γ2 x2 and f(x0) = 0, by the intermediate value

theorem, since f(x1) < 0 and f(x2) > 0. Thus, again the Homotopy-Lemma 3.6.1 yields:

τγ2(x0) = r(x0) ∈ ∂TK(σ,x0). Altogether, we have shown 1) and the addendum.

3.6.9 Theorem (Connection II).

Let a ∈ IK ∖ VK(σ). Then we get S2
K(σ, a) ≠ ∅⇔SKa(σa, a) ≠ ∅.

Proof. Let γ ∈S2
K(σ, a). If, on the one hand, ∣γ∣ = 1, we obviously have γ2 ∈SKa(σa, a).

If ∣γ∣ = 2, on the other hand, then γ =∶ γ1γ2 ∈ S2
K(σ) and tr(γ2) ∩ tr(s) is empty. Hence

Theorem 3.6.8 yields the desired.
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In order to show the other implication, let γ2 ∈SKa(σa, a). Again, by Theorem 3.6.8 we

can assume γ = γ2 and S(γ) ∈ tr(s). Therefore, we get γ ∈S2
K(σ, a).

We easily deduce from the theorem above:

3.6.10 Corollary. We have the set equality

S2
K(σ) =S2

K(σ) ∪ ⋃
a∈IK∖V

2
K(σ)

SKa(σa).

We are able to use the Connection-Theorems inductively and exploit the properties of

the sets V n
K(σ) this way. For this purpose, we introduce some notions that are only used

to simplify the claims subsequently. We denote the set of these points which can be

iteratively constructed by building continuation channels as de�ned in De�nition 3.6.5

by W n
K(σ) :

3.6.11 De�nition. We de�ne recursively: W 1
K(σ) ∶= VK(σ) and for n ≥ 2

W n
K(σ) ∶= {x ∈W n−1

K (σ) ∪ VKn−1
a

(σn−1a ) ∣ a ∈ V n
K(σ) ∖ V n−1

K (σ)}

where σna , sna and Kn
a are de�ned as follows: Let a ∈ IK ∖ VK(σ), then

i) σ1
a ∶= σa, s1a ∶= sa and K1

a ∶=Ka are de�ned as in De�nition 3.6.5 and

ii) Kn
a ∶= (Kn−1

a )a, σna ∶= (σn−1a )a, sna ∶= (sn−1a )a, for n ≥ 2 and a ∈ IK ∖ VKn−1
a

(σn−1a ).
Due to the notion Ea introduced in De�nition 3.6.5, for n ≥ 1 we use the abbreviation

Ena ∶= (Kn
a , s

n
a , σ

n
a ).

Figure 49 shows an example with a starting channel given by a polygon.

Assuming a point a ∈ V n+1
K (σ) ∖ V n

K(σ), it is easy to verify that a /∈ VKn−1
a

(σn−1a ). Hence
σna , s

n
a andK

n
a ; consequently,W

n+1
K (σ) are well-de�ned. Using the Connection-Theorems

3.6.8 and 3.6.9, we will show that the sets W n
K(σ) and V n

K(σ) are equal. However, this

means that all n-circularly visible points can be obtained by a constructive approach,

which is crucial for developing an algorithm. For this purpose, it is necessary to show

that the corresponding direction sets (see de�nition below) are equal, too.

3.6.12 De�nition. Let a ∈ V n
K(σ) ∖ V n−1

K (σ). Then we set

T nK(σ, a) = {v ∈ S1 ∣ ∃γ ∈Sn
K(σ, a) s.t. τγ(a) = v}

and call it the feasible direction set (of order n) in a.

Assuming a point a ∈ W n
K(σ) ∖W n−1

K (σ), then we have a ∈ VKn−1
a

(σn−1a ). By abuse of

notation we also call TKn−1
a

(σn−1a , a) feasible direction set (of order n) in a.
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a a

a a

s

γ(a)

s1a

γ(a)

s2a

γ(a)

s3a

γ(a)

Figure 49: Illustration of the De�nition 3.6.11.

Among other things, we particularly show that the de�nition of the feasible direction

set of a point a ∈ V n
K(σ) or a ∈ W n

K(σ) yields no ambiguities. First and foremost we

prove the equality of W n
K(σ) and V n

K(σ) for all n ≥ 1.

3.6.13 Theorem.

W n
K(σ) = V n

K(σ) and the corresponding fea-

sible direction sets are equal for all n ≥ 1.

Proof. We prove the claim by induction. The case n = 1 is trivial. First let us show the

inclusion W n
K(σ) ⊂ V n

K(σ). For the induction step n → n + 1 let a ∈W n+1
K (σ) and v ∈ S1

an arbitrary feasible direction of a. W.l.o.g. we can assume a /∈W n
K(σ). Obviously, we

get a ∈ VKn
a
(σna ) and a /∈ tr(sna). Hence SKn

a
(σna , a, v) is not empty; consequently, a is
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contained in V 2
Kn−1
a

(σn−1a ) (cf. Theorem 3.6.9). Therefore, there exists a biarc

γ̃nγ̃n+1 ∈S2
Kn−1
a

(σn−1a , a, v)

with breakpoint xn ∈ VKn−1
a

(σn−1a ) ⊂ W n
K(σ). But then the induction hypothesis yields

the existence of a generalized visibility spline γ1⋯γn+1 ∈ Sn
K(σ) for an arc γn with

C(γn+1) = C(γ̃n+1), i.e. a ∈ V n+1
K (σ) and τγn+1(a) = v.

In order to show the other implication, let us assume a point a ∈ V n+1
K (σ) and an arbitrary

feasible direction v ∈ S1 for the induction step n → n + 1. If a is contained in V n
K(σ),

the induction hypothesis yields the desired, and we can suppose a ∈ V n+1
K (σ) ∖ V n

K(σ).
By de�nition, there exists a generalized visibility spline γ ∶= γ1 . . . γm ∈ Sn+1

K (σ, a, v)
with m + card (V (γ)) = n + 1. Denoting the breakpoint of γm−1γm by x, we surely have

x ∈ V n
K(σ) because otherwise γ1⋯γm−1 would be a generalized visibility spline of a point x

contained in the de�ciency set IK∖V n
K(σ), and the equality n =m−1+card (V (γ1⋯γm−1))

would yield a contradiction. Now we have to distinguish between two cases:

First Case: x ∈ V n−1
K (σ).

Then we get tr(γm) ∩ tr(sn−1a ) ≠ ∅ since by induction hypothesis we have V 2
Kn−1
a

(σn−1a ) =
W 2
Kn−1
a

(σn−1a ). But then there exists a generalized arc spline γ̃m ∈ S2
Kn−1
a

(σn−1a , a) with

C(γ̃m) = C(γm) consisting of only one segment.

Second Case: x ∈ V n
K(σ) ∖ V n−1

K (σ).

In this case x is a smooth breakpoint and by induction hypothesis we can choose

γ1, . . . , γm−1 s.t. for some γ̃m−1 ∈ S with tr(γ̃m−1) ⊂ IK and C(γ̃m−1) = C(γm−1) we

get γ̃m−1 ∈SKn−1
a

(σn−1a ) and γ1 . . . γm−1γm ∈Sn+1
K (σ, a).

In both cases we get a ∈ V 2
Kn−1
a

(σn−1a ). But then the Connection-Theorem II (3.6.9) yields

a ∈ VKn
a
(σna ) ⊂W n+1

K (σ). By construction, we additionally have v ∈ TK(σna , a).

As we are especially interested in examining the di�erence sets V n
K(σ)∖V n−1

K (σ) or rather
their closures, the following abbreviations are useful:

3.6.14 De�nition. For n ≥ 1 we set Dn
K(σ) ∶= V n

K(σ) ∖ V n−1
K (σ), and D0

K(σ) ∶= tr(s).

An illustration can be found in Figure 50. Note that the sets Di
K(σ) are not pairwise

disjoint. In particular, we have

Di
K(σ) ∩Di+1

K (σ) = ⋃
a∈IK∖V

i
K(σ)

tr(si+1a )
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D1
K(σ) = VK(σ)

D2
K(σ)

D3
K(σ)

D4
K(σ)

Figure 50: Illustration of De�nition 3.6.14.

but Di
K(σ) ∩Dj

K(σ) = ∅ if ∣i − j∣ > 1. Since W n
K(σ) = V n

K(σ) for all n ≥ 1, we can easily

deduce:

3.6.15 Remark. For all n ≥ 1, a ∈ IK ∖ V n
K(σ) and i ≤ n we get the following set

inclusions almost directly by Theorem 3.6.13:

1) V a
Ki−1
a

(σi−1a ) ∩ V a
Ki
a
(σia) ⊂ tr(sia),

2) V a
Ki−1
a

(σi−1a ) ⊂Di
K(σ).

For our constructive method we need the existence of generalized visibility arcs hav-

ing their i-th breakpoint in Di
K(σ), and therefore we are interested in those having a

somewhat uni�ed distribution of their breakpoints:

3.6.16 Corollary (Distribution of breakpoints). Let n ≥ 2 and a ∈ V n
K(σ) ∖ V n−2

K (σ).
Then there exists a generalized visibility spline γ1⋯γn ∈Sn

K(σ, a) with breakpoints x1 ⪯ ⋯ ⪯ xn−1
s.t. xi ∈Di

K(σ) for all i = 1, . . . , n − 1.

Proof. From Theorem 3.6.13 we can deduce the existence of a generalized visibility spline

γ1⋯γn with breakpoints xi ∈ V a
Ki−1
a

(σi−1a ), i = 1, . . . n − 1. Then Remark 3.6.15 concludes

the proof.

3.6.17 Remark. Attention: Not all γ1⋯γn ∈ Sn
K(σ, a) for some a ∈ V n

K(σ) ∖ V n−1
K (σ)

with n ≥ 2 satisfy the uniform distribution of breakpoints as in Lemma 3.6.16.

A counterexample is illustrated in Figure 51. However, it is easy to see that, if Sn
K(σ)

and Sn
K(σ) are not equal, there is a generalized visibility spline having a non-smooth

breakpoint that is a left or right restriction point of a corresponding segment.
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a
v

γ1

γ2
γ3

γ4
a
v

γ1

γ2

γ3

γ4

Figure 51: Uniform distribution of the breakpoints. On the left a visibility spline γ1 . . . γ4 of a point

a ∈ V 4
K(σ) ∖ V 3

K(σ), whose breakpoints are not uniformly distributed, is depicted whereas the visibility

spline on the right satis�es the propositions of Corollary 3.6.16.

For the remaining part of this chapter we will always use a representation γ = γ1⋯γm
satisfying the uni�ed distribution of the breakpoints in minimal representation whenever

we consider a generalized visibility spline γ ∈Sn
K(σ).

We can de�ne alternating numbers for arcs splines with more than one segment and

even for generalized visibility splines γ ∈Sn
K(σ):

3.6.18 De�nition. Let γ = γ1⋯γm ∈ Sn
K(σ) be a generalized visibility spline. We set

Nm ∶= 0 and for all i = 1, . . . ,m − 1 we de�ne Ni to be 1 if the i-th breakpoint ai with

{ai} ∶= tr(γi) ∩ tr(γi+1) is a left or right restriction point of γi+1. Otherwise, Ni shall

vanish. Then we de�ne the alternating number of γ as follows:

A(γ) =
m

∑
i=1

(A(γi) +Ni) ,

where A(γi) is understood with respect to the tolerance channels Eia.

An example is illustrated in Figure 52.
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γ1

γ2 γ3

γ4

Figure 52: Alternating number of a generalized visibility spline γ ∶= γ1⋯γ4. Since the �rst breakpoint

is a left restriction point of γ1 and γ2, we have A(γ) = ∑
4
i=1A(γi) + 1 = (3 + 3 + 1 + 3) + 1 = 11.

3.6.19 Remark. The alternating number de�ned above is well-de�ned (cf. Theo-

rem 3.6.13) and does not lead to any ambiguities regarding De�nition 3.2.16. We can

always choose a generalized visibility spline γ ∈ Sn(σ, a) with ∣γ∣ + card (V (γ)) = n if

a ∈Dn
K(σ). Since non-smooth breakpoints of generalized visibility splines in uniform and

minimal representation only appear as left or right restrictions, we count an additional

alternation point: Supposing, for instance, an element γ1γ2 ∈S3
K(σ) with a non-smooth

breakpoint, then we get A(γ1γ2) = 1+A(γ1) +A(γ2) (cf. Figure 53). Since the segment

number ∣γ∣ and the number of vertices V (γ) are unique, this yields no ambiguities.

The following theorem enables a constructive approach for examining the visibility set

V n
K(σ) for every n ≥ 1, which will be an essential factor for the algorithmic design. Every

point a ∈ V n
K(σ)∖V n−1

K (σ) can be reached by a generalized visibility spline which supplies
a certain number of alternating restrictions s.t. the particular segments are uniquely

determined by three conditions.
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VK(σ)

V 2
K(σ)

γ1

γ2

a

Figure 53: Accumulation of breakpoints and alternating numbers. γ1γ2 ∈ S3
K(σ) with a non-smooth

breakpoint. A(γ1γ2) = 1 +A(γ1) + A(γ2) = 1 + 3 + 3 = 7 = 2 ⋅ 3 + 1. Note: S3
K(σ, a) = ∅. Hence we have

V 3
K(σ) ≠ {a ∈ IK ∣ S3

K(σ, a) ≠ ∅}.

3.6.20 Theorem.

Let (K,s, σ) be a tolerance channel. For every a ∈ Dn
K(σ) and feasible direction v ∈ S1

there is a generalized visibility spline γ ∶= γ1⋯γl ∈Sn
K(σ, a, v) s.t. γ1⋯γl−1 ∈Sn−1

K (σ)
1) is a blocking spline and A(γl) ≥m or

2) has an extremal exiting direction and A(γl) ≥m + 1 or

3) has an endpoint al−1 that is a left or right restriction point of γl and A(γl) ≥m + 1,

where ∣γ∣ = l and

m =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3, a ∈ ∂V n
K(σ) ∖K

2, a ∈ V n
K(σ), v ∈ ∂T nK(σ, a)

1, otherwise.

Consequence: We can choose γ satisfying A(γ) ≥ 2(n − 1) +m.

Proof. Since V n
K(σ) = W n

K(σ), we have V n
K(σ) ∖ V n−1

K (σ) = W n
K(σ) ∖W n−1

K (σ). Hence

a ∈ VKn−1
a

(σn−1a ) and therefore we can choose γl with A(γl) ≥m.

Again, we can argue by induction. In the case n = 1, clearly there exists a visibility arc

γ1 ∈SK(σ, a, v) with

A(γ1) ≥m = 2 ⋅ (1 − 1) +m.
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Using the induction hypothesis and the Connection-Theorem 3.6.8, we can choose ori-

ented arcs γ1,⋯, γl s.t.

A(γ1⋯γl) ≥ A(γ1⋯γl−1) +m ≥ 2(n − 2) + 2 +m = 2n − 4 + 2 +m = 2(n − 1) +m,

thus concluding the proof.

3.6.21 Corollary. For every a ∈ ∂V n
K(σ) with Sn

K(σ, a) ≠ ∅ there exists a visibility

spline γ1⋯γn ∈ Sn
K(σ, a) with A(γ̃i) ≥ 2 for all i = 1, . . . , n and A(γ̃i0) ≥ 3 for some

i0 ∈ {1, . . . , n}, where γ̃i are generalized arcs with C(γ̃i) = C(γi).

Proof. See Theorem 3.6.20.

3.6.22 Corollary.

Let (K,s, σ, d) be a start-destination channel and let n ∈ N be the minimal number

s.t. V n
K(σ)∩tr(d) ≠ ∅ for some n ∈N∖{0}. Then there exists a generalized visibility

spline γ ∈Sn
K(σ, tr(d)) with A(γ) ≥ 2n + 1 or (A(γ) ≥ 2n and E(γ) ∈ Ext(d)).

Proof. Follows immediately from Theorem 3.6.20 and Lemma 3.4.20.



122 3.7. (Smooth) Minimum Arc Paths

3.7 (Smooth) Minimum Arc Paths

Let (K,s, σ) be an arbitrary tolerance channel and n ≥ 1. We set

Un
K(σ) ∶= {a ∈ IK ∣ Sn

K(σ, a) ≠ ∅} .

As the closure bar over Sn
K is omitted in this de�nition, in general Un

K(σ) and V n
K(σ)

are not equal, which we have already seen in Figure 53.

Furthermore, the direction sets {τγ(a) ∈ S1 ∣ γ ∈Sn
K(σ, a)} for points a ∈ Un

K(σ)∖Un−1
K (σ)

generally would not be compact.

However, recalling the problem formulated in 3.1.16, we are interested in a smooth

minimum arc path. Thus, in particular, our solution spline should be smooth at the

breakpoints. Considering a point a ∈ Dn
K(σ), there exists a minimal possible number

m ∈N with a ∈ Un+m
K (σ).

3.7.1 Remark. Let us consider a point a ∈ Dn
K(σ) and a feasible direction v ∈ T nK(σ).

Then there exists a generalized visibility spline γ ∶= γ1⋯γl ∈Sn
K(σ, a, v) with breakpoints

x1 ⪯ ⋅ ⋅ ⋅ ⪯ xn−1 with xi = xi+1 if and only if xi is not smooth and xi ∈ VKi−1
a

(σi−1a ) ⊂Di
K(σ).

Assuming γ /∈ Sn
K(σ, a, v), we are interested in the integer m de�ned above. Setting

x0 ∶= S(γ) and xn ∶= E(γ), w.l.o.g. there is exactly one i ∈ {0, . . . , n − 2} with xi = xi+1.
We now have to distinguish between two cases:

First Case: A(γi+1) ≥ 3.

We obviously get m > 0 and by Corollary 3.4.8 we have xi+2 ∈ ∂V i+1
K (σ). Thus, m = 1

since there exists a biarc γ̃1γ̃2 ∈S2 s.t. γ1⋯γ̃1γ̃2⋯γn ∈Sn+1
K (σ, a, v), where γi+1 has been

replaced by γ̃1γ̃2 (cf. [33, 65]). An illustration can be found in Figure 54.

Second Case: A(γi+1) < 3.

This means γi+1 is not extremal. Consequently, there exist a breakpoint x̃i+1 ∈ C(γi+1)
and an arc γ̃i+1 ∈ SKi

a
(σia, x̃i+1, τγi+1(x̃i+1)). Hence m = 0. An example is illustrated in

Figure 55.

We now introduce further useful notation for start-destination channels and correspond-

ing smooth minimum arc paths.

3.7.2 De�nition. Given a start-destination channel (K,s, σ, d), the number

n(d) ∶= min
γ∈S∞

K(σ,d)
∣γ∣ ∈N

is the segment number of a smooth minimum arc path (cf. p. 57).
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VK(σ)

V 2
K(σ)

γ1

γ2

a

s

Figure 54: Smoothing generalized visibility splines. The generalized visibility spline γ1γ2 can be con-

verted to a smooth visibility spline with four segments. Note that this conversion is not unique, as

indicated by the orange biarcs.

VK(σ)

V 2
K(σ)

γ1

γ2

γ3
a

s

Figure 55: Smoothing generalized visibility splines. The generalized visibility spline γ1γ2γ3 can be

converted to a smooth visibility spline with four segments. As in Figure 54 this conversion is not

unique.
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VK(σ)

V 2
K(σ)

γ1

γ2

γ3 γ4

γ5

d

Figure 56: Smoothing minimum arc path γ1⋯γ5 with n(d) = 5 although tr(d) ∩ V 4
K(σ) ≠ ∅.

3.7.3 De�nition. Let D ∶= (K,s, σ, d) be a start-destination channel, a ∈ tr(d) and

n ∈ N s.t. V n
K(σ) ∩ tr(d) is empty. Setting E ∶= E1 ∶= (K,s, σ), for every i = 2, . . . , n we

de�ne, Ei ∶= Ei−1a regarding De�nition 3.6.11.

Note that the de�nition does not depend on the choice of a ∈ tr(d) but only on d itself.

Let us now consider a start-destination channel (K,s, σ, d) and let us assume that tr(d)
is n-, but not (n − 1)- circularly visible. Obviously, the inequality n ≤ n(d) is correct.

Although in applications with numerical data this is practically always an equation, there

are cases where this is a strict inequality (see Figure 56). By the strategy outlined in

Remark 3.7.1, every γ ∈Sn
K(σ, d) can be converted into a visibility spline γ̃ ∈Sn(d)

K (σ, d).
Note that this conversion is not unique, as depicted in Figure 56.

Recalling that a path which is composed of generalized arcs and not necessarily smooth

at breakpoints is simply called arc spline , we can formulate a similar problem. But

�rst we need some notation.

3.7.4 De�nition. The set of all arc splines γ ∈ T starting at tr(s), ending in tr(d) and
staying in IK is denoted by T∞

K(s, d). Furthermore, we set

m(d) ∶= min{∣γ∣ ∈N ∣ γ ∈ T∞
K(s, d)} .

An arc spline γ ∈ T∞
K(s, d) with ∣γ∣ =m(d) is called (continuous) minimum arc path.
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Obviously, we have m(d) ≤ n(d).

3.7.5 Problem. Let (K,s, σ, d) be a start-destination channel. Then we are seeking for

a continuous minimum arc path, i.e. an arc spline γ ∈ T∞
K(s, d) with ∣γ∣ =m(d).

To solve this problem, all we need to do is compute the windows of certain starting

channels de�ned successively:

3.7.6 De�nition. Let D ∶= (K,s, σ, d) be a start-destination channel, and let tr(d) not

be circularly visible. Then we can de�ne a new starting channel by window ωD (cf.

De�nition 3.4.16) whose interior is the connected component of IK ∖ tr(ωD) containing

tr(d). The corresponding restriction map is given by De�nition 3.1.3 with respect to

the starting arc ωD. We denote this channel by D2 ∶= (K2, ωD, σ2, d). If tr(d) is not

circularly visible with respect to D2, the corresponding window ωD2 is well-de�ned, and

we can recursively de�ne Di+1 ∶= (Ki+1, ωDi , σi+1, d) ∶= (Di)2 as long as tr(d) is not

circularly visible.

In order to show that an arc spline whose segments correspond to the windows ωDi leads

to a continuous minimum arc path, we have to prove the following theorem:

3.7.7 Theorem. Let D ∶= (K,s, σ, d) be a start-destination channel, and let m be the

minimal number s.t. tr(d) is circularly visible with respect to Dm. Then every continuous

minimum arc path of D has exactly m segments, i.e. m(d) =m.

Proof. By de�nition we have m(d) ≤ m. Let us assume to the contrary that m(d) <
m, and let γ ∶= γ1⋯γm(d) ∈ T∞

K(s, d). Clearly, tr(γ1) ⊂ VK(σ) and by the Cutting-

Lemma 3.2.27 there is an index i ≥ 2 s.t. γi cuts ωD. Then tr(γi) ⊂ VK2(σ) ∪ VK(σ).
Using this argument iteratively and the condition tr(d) ∩ VKj(σ) = ∅ for all 1 ≤ j < m,

this is a contradiction. Hence m =m(d).

As a consequence we obtain that a continuous minimum arc path can be constructed

iteratively and each segment can be constructed by three alternating restrictions, which

is crucial for our algorithmic approach (cf. Chapter 4).

Figure 57 shows a smooth and continuous minimum arc path for the same start-destination

channel.
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s

s

d

d

Figure 57: Comparison of a smooth (six segments) and a continuous minimum arc path (four segments).

The blue circles depict the breakpoints and the black ones the alternating restrictions.
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3.8 Summary and Outlook

In this section we give a summary and a short overview of our results, focusing on the

four types of tolerance channels introduced: (Non-)degenerate starting / continuation

channels.

Let (K,s, σ) be an arbitrary tolerance channel. We have characterized the visibility sets

V n
K(σ), having used induction with the aid of alternating sequences and the continuity

properties of the feasible direction sets. Therefore, we obtain the sets V n
K(σ) with n > 1

by computing one-circular visibility sets corresponding to tolerance channels which are

de�ned consecutively.

Regardless of the type of (K,s, σ), we can establish the following correspondences con-

cerning the visibility set VK(σ):

� For �xed point a ∈ VK(σ) and direction v ∈ TK(σ, a) we can always choose a

visibility arc γ ∈SK(σ, a, v) with A(γ) ≥ 1 since there is one degree of freedom.

� For �xed a ∈ VK(σ) there exists a γ ∈SK(σ, a) with A(γ) ≥ 2.

� Consequently, boundary points ∂VK(σ) ∖K can be reached by a visibility arc γ

with A(γ) ≥ 3.

Hence the degrees of freedom of visibility arcs are consistent with their alternating

number.

As already indicated, the circular visibility was introduced taking the linear visibility

into account:

3.8.1 De�nition. Let (K,s, σ) be a tolerance channel. Denoting the set of all oriented

line segments by L, the set of all visibility line segments is de�ned as follows:

LK(σ) ∶= {ω ∈ L ∣ tr(ω) ⊂ IK , S(ω) ∈ σ (E(ω), τω(E(ω)))} .

Likewise, L(σ, a) ∶= {ω ∈ L(σ) ∣ E(ω) = a} and L(σ, a, v) ∶= {ω ∈ L(σ, a) ∣ τω(a) = v} are

de�ned. Then we obtain the linear visibility set (with respect to (K,s, σ)):

LK(σ) ∶= {a ∈ IK ∣ LK(σ, a) ≠ ∅} .
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Oriented line segments are a special case of oriented arcs. Particularly, we have the set

inclusion LK(σ) ⊂SK(σ). Hence alternating numbers are also well-de�ned for oriented

line segments. Since lines have not degrees of freedom instead of three, we obtain:

� For �xed a ∈ LK(σ) and feasible exiting direction v ∈ S1 we can not guarantee

the unique visibility line segment ω ∈ LK(σ, a) supplying a non-zero alternating

number.

� For �xed a ∈ LK(σ) there exists an ω ∈ LK(σ, a) with A(ω) ≥ 1.

� Consequently, boundary points a ∈ ∂LK(σ) ∖K can be reached by a visibility line

segment ω with A(ω) ≥ 2.

For instance, these statements are shown in [39], but only in case of non-degenerate

starting channels given by polygons or splinegons. A complete proof including the

degenerate cases will not be covered here. Nevertheless, we are quite sure that the

gentle reader is able to prove these statements using the techniques introduced in the

previous sections.

If, additionally, a destination arc d is given s.t. D ∶= (K,s, σ, d) is a start-destination

channel, we can de�ne the linear window λD based on De�nition 3.4.16, which can be

characterized analogously:

3.8.2 Proposition. The visibility line ω which corresponds to λD possesses an alter-

nating sequence (a1, a2) with

i) a1,E(ω) ∈Kl and a2 ∈Kr or

ii) a1,E(ω) ∈Kr and a2 ∈Kl.

Addendum: ω is uniquely determined by the conditions above.

Proof. Analogous to Theorem 3.4.19 or cf. [54].

Iteratively computing the windows of successive starting channels always de�ned by the

predecessor window till tr(d) is linearly visible, we obtain a so called minimum link path:

3.8.3 De�nition. Let us denote the set of all polygonal curves staying inside IK, starting

at tr(s) and ending in tr(d) by L∞
K(s, d). A minimum link path (with respect to

(K,s, σ, d)) is a polygonal curve ω0 ∈ L∞
K(s, d) with ∣ω0∣ = min{∣ω∣ ∈N ∣ ω ∈ L∞

K(s, d)}.
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s

d

Figure 58: Minimum link path with �ve segments.

We are especially interested in the circularly visible points that are not linearly visible.

Therefore, we introduce the following term according to [23, 22]:

3.8.4 De�nition. The connected components of the de�ciency set PK(σ) ∶= IK ∖LK(σ)
are called pockets, and the line segments P ∩LK(σ) of the pockets P are said to be lids.

(cf. Figure 59).

Their examination will play an important role in the algorithmic part.

The remaining part of this section is devoted to a short outlook on the so-called cyclic

case . Frequently, a (smooth) minimum arc path is not exclusively desired within a

tolerance channel but within a slightly modi�ed version called cyclic tolerance channel.

They appear in some applications (cf. Section 5.2), and can be de�ned as follows:

3.8.5 De�nition. Let ω1 and ω2 be two Jordan curves that are piecewise Rω and CCW

oriented. Denoting the interior of ωi by I(ωi), we suppose tr(ω2) ⊂ I(ω1). Let us set

K ∶= tr(ω1) ∪ tr(ω2) and IK ∶= I(ω1) ∖ I(ω2). Then we call K a cyclic tolerance

channel and use the notation Kl ∶= tr(ω1) and Kr ∶= tr(ω2).
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s
LK(σ)

PK(σ)

Figure 59: Illustration of De�nition 3.8.4.

3.8.6 De�nition. Let us denote the set of all arc splines which are Jordan curves, stay

in IK and whose winding number with respect to all points a ∈ IK2 doesn't vanish by

TcyclK . Furthermore, we de�ne the subset Scycl
K of all cyclic visibility splines which are

additionally smooth at their breakpoints.

Then we can de�ne a (smooth) cyclic minimum arc path of a cyclic tolerance channel:

3.8.7 De�nition. Let K be a cyclic tolerance channel. An arc spline γ0 ∈ TcyclK is called

a continuous cyclic minimum arc path if

∣γ0∣ = min{∣γ∣ ∈N ∣ γ ∈ TcyclK } .

Likewise, a smooth arc spline γ0 ∈S∞
K,cycl with

∣γ0∣ = min{∣γ∣ ∈N ∣ γ ∈Scycl
K }

is said to be a smooth cyclic minimum arc path.

Examples are illustrated in Figure 60.
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Figure 60: Cyclic smooth/continuous minimum arc path. Top: Continuous case; left: Seven segments;

right: Minimum number of six segments; bottom: Smooth case; left: Blocking arcs (alternately blue and

orange); right: Smooth cyclic arc splines with a not necessarily minimum number (twelve segments).
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Let K be a cyclic tolerance channel and s an oriented arc with Kl ∩ tr(s) = {S(s)} and

Kr ∩ tr(s) = {E(s)}. Although IK ∖ tr(s) is simply connected, K ∪ tr(s) doesn't yield a

tolerance channel since K ∪ tr(s) is not representable as a Jordan curve.

However, supposing the non-trivial case that every loop whose trace is a circle is con-

tractible, we obtain: For su�ciently small ε > 0 we have VK(s) ∩Mε = ∅, where

Mε ∶= {a ∈ IK ∩Rs ∣ 0 < dist(a, tr(s)) ≤ ε}

and VK(s) denotes the set of all a ∈ IK s.t. there exists a γ ∈ S ending in a with

S(γ) ∈ tr(s), tr(γ) ⊂ IK and det(τγ(S(γ)), τs(S(γ)))> 0.

Thus, we can assume a start-destination channel (K̃, s, σ, d) which is in fact induced by

IK ∖Mε and the requirements given above, which control the feasible starting directions

of the valid visibility arcs. Then VK(s) is the circular visibility set of (K̃, s, σ), i.e.
VK(s) = VK̃(σ). Let γ1 be the blocking arc that is associated to the corresponding

window. We can now de�ne the second tolerance channel that appears when computing

a cyclic minimum arc path. The starting segment and the restriction map are set due

to De�nition 3.6.5 or 3.7.6 respectively. How to choose the corresponding bounding

curve ωK , is indicated in Figure 61. In fact, we choose a subset of tr(γ̃1) as destination
segment, where γ̃1 is the maximal extension with respect to inclusion in IK .

The subsequent steps (if needed) work exactly in the same way as in the non-cyclic case:

We repeat the procedure while tr(γ̃1) is not circularly visible.

Thus, we can guarantee the minimal possible number of segments needed for a continuous

cyclic minimum arc path up to one segment. Whether we really achieve the minimal

number or not depends on the choice of tr(s) (cf. Figure 60 top).

In case of searching for a smooth cyclic minimum arc path, additionally the last and

the �rst segment have to be joined smoothly. Hence we can only guarantee the minimal

possible number of segments up to two segments.
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Figure 61: First and second tolerance channels given by a cyclic tolerance channel. Top: Smooth case;

bottom: Continuous case.
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4
THE ALGORITHMIC APPROACH

In this chapter we are dealing with an algorithmic realization of computing circular

visibility sets and (smooth) minimum arc paths of an arbitrary tolerance channel. The

theoretical results of Chapter 3 are used for the design of e�cient algorithms.

The characterization of blocking arcs by alternating sequences is essential for a con-

structive approach. Due to the results of Chapter 3, we are able to develop greedy

algorithms in order to compute the circular visibility sets V n
K(σ) and a (smooth) min-

imum arc path. The computation of a smooth minimum arc path requires two main

steps: The `forward' step constructs the windows of certain tolerance channels and the

last segment of our solution. In contrast, the `backward' step establishes the remaining

segments. If the calculated solution is a generalized visibility spline but not a smooth

arc spline, we convert it into a smooth arc spline by adding additional segments without

losing the minimal possible number of segments.

In the �rst section of this chapter, we give a macrostructure of our proposed algorithms.

Examining various con�gurations of alternating left and right restrictions yields alternat-

ing sequences that can be used for determining the blocking arcs of a circular visibility

`Man verliert die meiste Zeit damit,

dass man Zeit gewinnen will.'

(John Steinbeck, American writer)
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set and hence the whole set. Besides, we outline an iterative approach to compute the

sets V n
K(σ) and a (smooth) minimum arc path.

Algorithmic details and runtime improvements in case of a polygon P are presented in

the following sections. Chou and Woo have shown that the subset of IK circularly visible

from a point inside P can be determined by computing its Circular Visibility Diagram

(CVD) in O(n) time, where n is the number of the vertices of P . Therefore, a short

introduction to CVDs is given in Section 4.2.

In Section 4.3, we discuss the determination of the circular visibility set VK(σ) of a

starting channel (K,s, σ) by iteratively constructing CVDs. If tr(s) is a point, we only

need to compute the CVD with base point tr(s). In case of a line segment, we use the

strategy proposed in [22] and give some improvements.

If tr(s) is an arc, we propose a method that is based on the case in which tr(s) is a line
segment (see Section 4.4).

Section 4.5 concerns the algorithmic adaptation to continuation channels, which can be

done likewise.

In Section 4.6, we combine all the details of the previous sections in order to improve the

runtime of the particular steps of the algorithms presented in the �rst section. Thus, we

can develop an e�cient algorithm for computing a smooth and a continuous minimum

arc path of a polygonal start-destination channel which is therefore also based on CVDs.

At the end of every particular section we show the runtime complexities of the various

algorithms.

The chapter is completed by a short overview. We brie�y summarize our algorithmic

approaches for computing a (smooth) minimum arc path and test the implementation of

the algorithms experimentally regarding the runtime and the number of CVDs needed.

For this purpose, we concentrate on both real and synthetic data. However, we address

the performance of our algorithms in real applications not until Chapter 5.
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4.1 Greedy Proceeding and Alternating Sequences

Let (K,s, σ) be an arbitrary tolerance channel. Since VK(σ) is connected and compact

(cf. Lemma 3.1.19), it su�ces to compute the boundary ∂VK(σ) (with respect to R2) in

order to characterize VK(σ). Therefore, we determine all blocking arcs and merge them

with K. This way we obtain ∂VK(σ).
The characterization of blocking arcs by alternating sequences enables a constructive

approach: Given an alternating sequence of length 3, there exists exactly one arc which

is maximal with respect to inclusion in IK corresponding to it. If we want to compute

the circular n-visibility set V n
K(σ) (n > 1) or a (smooth) minimum arc path, we can

proceed iteratively. The theoretical results of Chapter 3 lead us to a greedy approach.

For the examination of our algorithmic approach, we make a general assumption in

order to make this chapter more easy to read: We restrict ourselves to starting channels

with a starting segment given by an oriented arc s.t. there don't appear any pseudo

restrictions. For this purpose, we only have to make sure that our starting segment s is

contained in K and has convex vertices, i.e. there exist neighborhoods U and V of S(s)
and E(s) s.t. U ∩ IK and V ∩ IK are convex (cf. Section 3.2).

First we want to focus on an algorithm for the computation of VK(σ).

4.1.1 Computation of VK(σ)

As indicated above, we have to examine potential alternating sequences of length 3 and

compute the corresponding arcs that are maximally extended in IK .

In fact, the mathematical results of Chapter 3 establish the fundamentals of an algo-

rithm for computing the circular visibility set with respect to any tolerance channel.

Speci�cally, the macro structure of the algorithm doesn't depend on the type of the

bounding curve, but the constructive approach for searching visibility arcs with an al-

ternating number of at least 3 depends, of course, on the class of the channel curve.

We now sketch how to identify the blocking arcs in case of a polygonal channel and a

channel given by an arc spline.

Let us consider, for instance, a starting channel (K,s, σ) given by an arc spline ω

that is not necessarily smooth with minimal representation ω1⋯ωn, i.e. ∣ω∣ = n. Using

the abbreviations K ∶= tr(ω) and s ∶= ω1, all possible con�gurations of left and right

restrictions are given as follows: The corresponding arc
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s s s
s

Figure 62: Examples of blocking arcs in case of an arc spline as bounding curve. In addition, the

corresponding alternating sequences of length 3 are depicted. They are given by three vertices, two

vertices and touching one arc, one vertex and touching two arcs, and touching three arcs respectively.

� passes through three vertices,

� passes through two vertices and touches1 an arc of K,

� passes through one vertex and touches two arcs of K or

� is at tangent to three arcs.

Figure 62 shows examples for each of the four con�gurations in case of a starting channel

given by an arc spline.

Given the corresponding generalized circles of the ωi, in a brute force approach, we could

compute the circle C satisfying one of the requirements formulated above (cf. Table 2.1

on page 19 or [69] respectively). If tr(s) ∩C ≠ ∅, we can determine the starting point x

of a possible visibility arc γ and a corresponding alternating sequence (a1, a2, a3). If x
satis�es the starting condition σ, the inclusion [x, a3]γ ⊂ IK holds and if A(γ) ≥ 3, we

have found a blocking arc.

Of course, this approach needs �nitely many steps since the number of oriented arcs

ωi is �nite. Nevertheless, this proceeding is not very e�cient. Examining the potential

alternating sequence needs O(n3) time and the check if the corresponding arc stays in-

side IK can be done in linear time. The additional checks needed can be implemented

in constant time. Overall, this proceeding results in an O(n4)-algorithm. How to im-

1There exists an i ∈ {1, . . . , n} and x ∈ tr(γ) ∩ tr(ωi) with τγ(x) = ±τωi(x).
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Figure 63: Illustration of blocking arcs in case of a polygon. All con�gurations of alternating sequences

representing the right-blocking case are depicted.

prove the strategy in case of polygons, which is certainly most important for practical

applications, will be discussed later on.

If ω1⋯ωn ∈ Ln is a polygonal curve, the blocking arcs can be determined by

� three vertices,

� two vertices and one edge or

� one vertex and two edges.

An illustration can be found in Figure 63.

Hence we obtain all blocking arcs by investigating degenerate tolerance channels (K,si, σi)
with vertices {vi} ∶= tr(si) of K and corresponding degenerate starting maps σi. Each

set VK(σi) is brie�y called circular visibility set of vi.

Visibility problems are well-studied within the scope of polygons. We have already men-

tioned that they can be determined in linear time by constructing a Circular Visibility

Diagram (CVD). An e�cient strategy using CVDs is presented in Sections 4.2 - 4.5.



140 4.1. Greedy Proceeding and Alternating Sequences

For other types of bounding curves, individual strategies have to be developed. However,

in principle they work the same way. The only question is, how to search e�ciently for

alternating sequences in order to construct all blocking arcs.

Before we discuss our improvements within the scope of polygons, we �rst sketch our

algorithmic procedure for computing V n
K(σ), n > 1 and a (smooth) minimum arc path.

4.1.2 Computation of V n
K(σ) and Minimum Arc Paths

In the previous subsection we outlined how to compute the blocking arcs of VK(σ). Next,
we want to determine the continuation channels given by the blocking arcs computed

beforehand and compute again the blocking arcs of each continuation channel, and so on.

Hence we pursue an iterative approach. As the approach for every connected component

of IK∖V i
K(σ) is the same, we focus on the computation of a smooth/continuous minimum

arc path in a start-destination channel D ∶= (K,s, σ, d), and we use the abbreviation

E ∶= (K,s, σ).

In this case, the windows of the iteratively determined continuation channels are com-

puted (cf. Section 3.7). If the blocking arc γ associated with the window with respect to

Ei and d has an alternating number A(γ) > 3, Ei+1 is a degenerate continuation channel,

as explained in De�nition 3.7.3 and 3.6.5 respectively. The procedure is stopped when

tr(d) is circularly visible, and a visibility arc satisfying the conditions of Lemma 3.4.20 is

computed. This arc represents the last segment of our solution spline. The predecessor

segments can be computed by touching their successor and by a left and a right restric-

tion (cf. Theorem 3.6.8). Recall that in case of a (smooth) minimum arc path only left

restrictions from Kl and right restrictions from Kr have to be taken into account (cf.

Theorem 3.4.19).

If necessary, the calculated solution γ ∈ Sn
K(σ) is smoothed by using a biarc-strategy,

as proposed in Section 3.7. The whole approach is summarized in Algorithm 1.

By means of a small example, we illuminate the several steps of Algorithm 1 in order

to give a better understanding of our constructive approach for computing a smooth

minimum arc path. We explain and visualize the whole forward and backward step by

this example.
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Algorithm 1 Smooth Minimum Arc Path

Input: Start-destination channel (K,s, σ, d)
Output: List L of circular arcs de�ning a smooth minimum arc path

1: // Forward step

2: i← 1

3: Ei ← (K,s, σ)
4: while tr(d) ∩ VK(σ) = ∅ do

5: Compute blocking arc γ(tr(d)) in Ei by examining

(global) alternating sequences of length 3

6: ωi ← ω(tr(d))

7: i← i + 1

8: Compute and store Ei // cf. De�nition 3.7.3

9: (K,s, σ) ← Ei

10: end while

11: // Current value of i is the minimal number with V i
K(σ) ∩ tr(d) ≠ ∅

12: γi ← visibility arc of Ei ending in tr(d)
13: Insert γi into L

14: // Backward step

15: for j = i − 1 to 1 do

16: (K,s, σ) ← Ej

17: γj ← visibility arc of SK(σ) joining γj+1
18: Insert γj into L

19: end for

20: // Possibly: Smoothing Step

21: if γ ∶= γ1⋯γi is not smooth then

22: Smooth γ and insert the n(d) − i additional segments into L

23: end if

24: return L
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Example. Figure 64 and 65 show the forward step and backward step for computing a

smooth minimum arc path in an arbitrary polygonal start-destination channel:

In order to compute the �rst window, we have to examine all visibility arcs with an

alternating number of at least 3 (cf. Theorem 3.4.19), until the blocking arc γ1 which

corresponds to the window is found. We then obtain a continuation channel with a

window whose corresponding blocking arc γ2 has an alternating number of 4. The sub-

sequent tolerance channel being degenerate, we can construct the according blocking

arc γ3 regarding the unidirectional starting restriction given by γ2. The construction

of the remaining windows works in a complete analogy, the corresponding continuation

channels and blocking arcs are also illustrated in Figure 64. The last segment of our

solution spline is determined up to set inclusion in the last step of the whole forward

step. In the backward step, its predecessor segments are constructed by two alternat-

ing restrictions and the requirement of smoothly joining its successor as illustrated in

Figure 65. Altogether, we get a smooth minimum arc path with six segments.

If we want to compute a continuous minimum arc path, which means that the desired

arc spline doesn't need to be smooth, we consider in every step starting channels as

presented in Section 3.8. An algorithmic description can be found in Algorithm 2.

We want to illustrate the algorithm for the computation of a continuous minimum arc

path by an example as well:

Example. For the continuous case, we consider the same start-destination channel as

in the previous example in order to discuss our algorithmic approach summarized in

Algorithm 2.

The very �rst step does not di�er from the smooth case, and therefore we yield the same

window and blocking arc γ1. Next, we clip the polygon at the �rst window and get a

new start-destination channel. Due to Algorithm 2, this process is continued untill we

reach tr(d) and consequently a continuous minimum arc path having a segment number

of 4 is constructed. Figure 66 shows the respective necessary steps.

Since, in this section, we only gave a general overview of the whole procedure, we

will discuss the particular steps in detail in the following sections, where we focus on

polygons. We will present an e�cient approach to compute the blocking arcs by using

CVDs.
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Figure 64: 'Forward step'. The several continuation channels and corresponding blocking arcs are

depicted. In particular, we have A(γ1) = A(γ3) = A(γ5) = A(γ6) = 3 and A(γ2) = A(γ4) = 4. Therefore,

in the third and �fth step we have to consider degenerate channels.
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Figure 65: 'Backward step'. The construction of the particular segments is illustrated. On the bottom,

we can see the smooth minimum arc path with six segments due to Algorithm 1.
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Figure 66: The particular steps of Algorithm 2, which yields a continuous minimum arc path with four

segments, are illustrated.
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Algorithm 2 Continuous Minimum Arc Path

Input: Start-destination channel (K,s, σ, d)
Output: List L of circular arcs de�ning a minimum arc path

1: i← 1

2: Di ← (K,s, σ, d)
3: while tr(d) ∩ VK(σ) = ∅ do

4: Compute γDi by examining (global) alternating sequences of length 3

5: ωi ← ωDi , γi ← γDi // cf. De�nition 3.7.6

6: Insert γi into L

7: i← i + 1

8: Compute and store Di

9: (K,s, σ, d) ←Di

10: end while

11: γi ← visibility arc starting at tr(ωi−1) and ending in tr(d)
12: Insert γi into L

13: return L
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4.2 Circular Visibility Diagrams (CVD)

In this section we give a short overview of Circular Visibility Diagrams (CVDs), which

were introduced by Chou and Woo (cf. [23]).

Let (K,s, σ) be a degenerate starting channel with a simple polygon K and {x} ∶=
tr(s) ⊂K. We use the notations: ωK ∶= ω1⋯ωn with line segments ei ∶= tr(ωi), which are

maximal with respect to inclusion. We call them edges of K. The following abbreviations

are subsequently used: VK(x) ∶= VK(σ), SK(x) =SK(σ).

The main idea of the development of CVDs is the representation of visibility arcs starting

from x by the centers of the corresponding circles. Whereas only one line segment

connects two distinct points, there is an in�nite number of circular arcs connecting

them. However, considering a �xed orientation (CW or CCW), the circles passing

through x can be uniquely represented by their corresponding centers. This way the

visibility arcs γ ∈ SK(x) can be classi�ed. They can be grouped with respect to the

positions of their centers according to the edges they hit when exiting K (see Figure 67).

Such a classi�cation can be made for each orientation, and they are called CW-CVD

and CCW-CVD respectively. We will see that the real plane is divided into di�erent

regions, which belong to exactly one edge of the polygon or represent the circles staying

in IK or starting into EK .

Kx

ei

Figure 67: CCW visibility arcs emanating from x, which correspond to the edge ei of K, represented

by their centers.
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4.2.1 Preliminary De�nitions and Comments

De�nition. Let ε be an arbitrary orientation (CW or CCW). Given a center c ∈R2∖{x},
we denote the unique arc, if it exists, that is maximal with respect to inclusion in IK

with center c and orientation ε, starting at x, by µ(c, ε). For every i ∈ {1, . . . , n}, we
then set:

Ri(ε) ∶= {c ∈R2 ∣ x ≠ E(µ(c, ε)) ∈ ei} .

Analogously, we can de�ne the set of centers whose corresponding circles stay inside IK

R∅(ε) ∶= {c ∈R2 ∣ E(µ(c, ε)) = x}

and the region RE(ε) representing the arcs starting at x into the direction of the exterior

of K with orientation ε. The set {R∅(ε),RE(ε),R1(ε), . . .Rn(ε)} is called ε-CVD of

K with respect to x, and x is said to be the base point (of the CVD).

If there are no ambiguities, we use the abbreviations Ri,RE and R∅.

For an illustration, please have a look at Figure 69.

Note that RE is empty if and only if x /∈K. By de�nition, every region Ri belongs exactly

to one edge ei in the following way: A circular arc starting from x with corresponding

center in Ri �rst crosses ei when leaving IK , which is equivalent to E(µ(c, ε)) ∈ ei. We

get R2 = R∅ ∪RE ∪⋃1≤⋅⋅⋅≤nRi and the open sets R̊i, R̊∅ are pairwise disjoint.

Nevertheless, these regions are bounded by so-called partitioning curves that are com-

posed of half-lines, line segments and parabolic curve segments and are on the border

of at least two regions. In fact, these curves are built by Voronoi-diagrams (see [23]):

De�nition. Let e be an edge of K. The set of all equidistant points between x and e,

V (x, e) ∶= {c ∈R2 ∣ dist(c, e) = ∥c − x∥)}, is called Voronoi-diagram of x and e. The

corresponding curves are referred to as bisectors.

A partitioning line or ray respectively given by V (x, e) is a subset of the perpendicular

bisector between x and a vertex of e. Hence a visibility arc with its center based on

such a line segment hits a vertex of e, whereas a parabolic curve represents the loci of

the centers that provide a visibility arc which is tangent to e.

De�nition. The points joining two or more partitioning curves of a CVD are called

nodes (of the CVD).
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Remark. Consider a circular arc γ whose center c is a node that is joined by exactly

two partitioning curves. Then Chou and Woo proved that γ satis�es one of the following

alternatives

� γ passes through two vertices of K.

� γ passes through a vertex and is tangent to an edge of K.

� γ is tangent to two edges of K.

Obviously, the corresponding points are left or right restriction points of γ if they do

not coincide with its end point. Figure 69 also depicts this correspondence.

In this manner, the visibility arcs γ with A(γ) ≥ 3 and the window with respect to x can

be identi�ed by examining the nodes of the CCW-CVD and CW-CVD: Let N be a node,

ε an orientation and ei ≠ ej be two corresponding edges of N . Using the abbreviation

γ ∶= µ(c, ε), we have to examine the intersection points a1 ≺ a2 of tr(γ) with ei and ej

respectively. If (a1, a2) is an alternating sequence of length 2, we getA(γ) ≥ 3 since x ⪯ a1
is a pseudo restriction point by de�nition. Thus, γ is a blocking arc by Theorem 3.4.7.

Blocking arcs with A(γ) > 3 correspond to nodes that are generated by more than two

partitioning curves. Again, by Theorem 3.4.7, we can be sure of obtaining all blocking

arcs when examining all nodes of the CCW-CVD and CW-CVD.

4.2.2 Sketch of the Overall Algorithm

The data structure of the CVD is similar to the dual space data structure used by

Chazelle and Guibas (cf. [20]) for solving a variety of linear visibility problems. In that

paper, a line ax + by + 1 = 0 is represented by a point (a, b) ∈R2. These points are then

grouped into regions according to the edge their corresponding visibility rays hit. This

classi�cation results in a planar partition.

In linear visibility, a partial order in which visibility rays hit the edges of a polygon

is crucial for the construction. However, in circular visibility, visibility arcs emanating

from a point can hit two edges in either order, as shown in Figure 68.

To overcome the apparent lack of a partial order, a polygon is decomposed into its linear

visibility polygon LK(σ) and the set of pockets P1, . . . , Pm (cf. De�nition 3.8.4), each of

which exhibits a partial order. The boundary ∂LK(σ) is a polygon. According to Chou
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γ1

γ2

x

ei

ej

Figure 68: Possible hitting order of two edges ei, ej ; two arcs γ1 and γ2 emanating from x. γ1 �rst

touches ei before leaving K at ej ; γ2 �rst touches ej before leaving at ei.

and Woo, we call it the star-shaped polygon (of K) and denote it by K∗. The CVD of a

simple polygon can be obtained by constructing the CVDs for the star-shaped polygon

and then for every pocket. An overview of the CVD construction procedure is outlined

in Algorithm 3.

Algorithm 3 CVD Simple Polygon
Input: Simple polygon K, base point x, orientation ε

Output: CVD(K, x, ε)

1: Compute the decomposition IK = LK(σ) ∪ P1 ∪ ⋅ ⋅ ⋅ ∪ Pm
2: Construct CVD(LK(σ), x, ε)
3: for i = 1 to m do

4: Construct CVD(Pi, x, ε)

5: end for

6: return CVD(K, x, ε)

The collinearity of x with the lids (cf. De�nition 3.8.4) exhibits an essential property,

which ensures the development of a partial order on the pockets (cf. [23]).

As already indicated, Algorithm 3 can be used for computing the circular visibility set

VK(σ) in case of a degenerate starting channel (see Algorithm 4). In particular, the

window can be examined this way if a destination segment is given additionally.

4.2.3 The Time Complexity

Algorithm 3 �rst computes the linear visibility set LK(x) and K∗, which can be done in

linear time regarding the number of vertices n. Since a partial order in which an arc hits
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Algorithm 4 Computation of VK(σ) in case of a degenerate starting channel.

Input: (K,s, σ) degenerate starting channel with polygon K and {x} ∶= tr(s)
Output: Boundary of VK(σ)
1: i← 0

2: List L, L← NIL

3: Construct CVD(K, x, CW)

4: Construct CVD(K, x, CCW)

5: for all nodes N of the two CVDs do

6: Compute the arc γ(N) corresponding to N

7: if A(γ(N)) ≥ 3 then

8: Insert γ(N) into L
9: end if

10: end for

11: Compute the boundary of VK(σ) using K and L

the edges of K∗ is established, the corresponding part of the CVD can be constructed

in O(n) time. To compute the part generated by all the pockets with respect to x needs

extra e�ort, but the time required is bounded by the total number of vertices in K. The

time complexity for constructing the CVD(K, x, ε) is the sum of the time complexity

for the two individual processes, which are all bounded by O(n). By construction, the

number of nodes and the number of partitioning curves are in the same order as the

vertices of K. Hence a CVD can be computed in linear time1.

The boundary ∂VK(σ) with respect to the topology on R2 consists of subsets of K and

subarcs of the blocking arcs. The identi�cation of the blocking arcs requires O(n) time.

With all these arcs identi�ed, K and the blocking arcs of VK(σ) can be traversed in

order to compute the parts contributing to ∂VK(σ). This can be trivially achieved in

linear time. Hence the total time complexity of Algorithm 4 is O(n) as well.
Note that by Lemma 3.4.19 an e�cient stopping criterion is given when computing

the window of a degenerate start-destination channel (K,s, σ, d). This criterion can be

directly read o� the CVD. Nevertheless, the computation of the CW- and CCW-CVD

cannot be avoided, which results in a linear time algorithm as well.

1A detailed calculation of the time complexity for the computation of a CVD can be found in [23].
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Figure 69: Illustration of a polygon K (dashed) and the CCW-CVD (solid) with base point x. A

visibility arc γ starting from x with a left and a right restriction is depicted as well. Its center is located

on the node generated by the regions belonging to edges e25, e9 and e16. Note that γ is a blocking arc

with respect to (K,s, σ).
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4.3 Circular Visibility of an Edge

Let (K,s, σ) be a starting channel with a polygon K and an oriented line segment s.

W.l.o.g. we can assume tr(s) to be an edge of K. Substantially, we give a brief sketch

of the method presented in [22] and outline our modi�cations and improvements.

In case of starting channels, pseudo restrictions only appear at boundary points of s and

can therefore be identi�ed by examining the circular visibility of these boundary points.

Therefore, as already mentioned in Section 4.1, we don't deal with the case where s has

extroverted vertices, i.e. we don't have to concern pseudo restrictions.

4.3.1 Sketch of the Overall Algorithm

By Theorem 3.4.7, the circular visibility set VK(σ) is de�ned by visibility arcs supplying

alternating sequences of length 3, namely the blocking arcs. In case of a polygon, at

least one of these restriction points must be clearly given by a vertex of K as an arc

cannot be touched by an edge from the interior of the corresponding circle. Figure 63

illustrates the di�erent con�gurations. Hence these arcs and particularly the window in

case of a start-destination channel can be found by computing CVDs of some vertices

and examining the corresponding nodes as described in the previous section.

The strategy suggested by Chou et al. ([22]) attempts to constantly reduce the domain

in which blocking arcs are identi�ed: First they construct the linear visibility set LK(σ),
which can be done in linear time. Then every pocket is examined to �nd the blocking

arcs entering the corresponding pocket one after the other. Since blocking visibility lines

de�ning lids have alternating sequences of length 2, either CW or CCW arcs can reach a

pocket but not both. Thus, for each point, only its CVD with respect to one orientation

needs to be computed. A pocket is said to be a CW-pocket if only CW oriented visibility

arcs can reach the interior of the pocket, and CCW-pocket if only CCW arcs can enter

it.

Next, for each pocket two initial arcs are constructed. Then two alternating restrictions

of the visibility arc computed in the previous step stay �xed. One of these so-called

hinges acts as the base point for a new CVD. From this, further visibility arcs which

provide an alternating number of at least 3 can be computed, as we could see in the

previous section. The �rst two hinges are given by the lid of the current pocket that

is examined. The algorithm reduces the problem of examining the region between two
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visibility arcs iteratively (see Figure 70). By propagating such supports and `sweeping'

visibility arcs through them, the left- and right-blocking arcs in the region between two

such arcs can be e�ciently constructed.1

Algorithm 5 Edge visibility

Input: (K,s, σ) starting channel with polygon K, tr(s) edge of K
Output: Boundary of VK(σ)
1: Compute LK(σ) and the corresponding pockets P1, . . . , Pm

2: for i = 1 to m do

3: Compute the blocking arcs γi1, . . . , γili corresponding to Pi

4: Insert γi1, . . . , γili in List L

5: end for

6: Compute the boundary of VK(σ) using K and L

Next, we concern ourselves with an arbitrary start-destination channel D and the com-

putation of the window ωD. In this case, we give a deeper insight in the algorithmic

approach, as we can suggest some modi�cations and improvements.

4.3.2 Improvements for Start-Destination Channels

Let us assume an additional designated segment d s.t. D ∶= (K,s, σ, d) is a start-

destination channel. We then only consider the pocket which contains the window ωD.

De�nition. If tr(d) ∩LK(σ) = ∅, we call the pocket P with tr(d) ⊂ P , main pocket.

As seen above, we �rst compute the linear window λD. Due to Proposition 3.8.2, λD

corresponds to a visibility line γ0 having an alternating sequence (a1, a2) of length 2.

W.l.o.g. we can assume that a1 is a right and a2 is a left restriction point. If S(γ0) is the
left endpoint of s, γ0 has an alternating sequence of length 3 and γ0 is associated with ωD

(i.e. γ0 = γD) and we are done. Otherwise, the main pocket exists and is a CCW-pocket.

Next, the successor segment γ1 of γ0 is computed as follows: Since S(γ0) is not the left
endpoint of s, we have to distinguish between two cases: Either S(γ0) is the right end

point b of s or S(γ0) ∈ tr(s)ri. In the latter case, we set γ1 ∶= γ0. Otherwise, γ1 is the

1For a more detailed presentation, please have a look at [22].
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blocking arc associated with the window with respect to b, which can be computed by

constructing the CCW-CVD of b. If γ1 isn't associated with ωD, we compute the next

segment γ2. For this purpose, the last two alternating restrictions of the tr(d)-adapted
alternating sequence of γ1 stay �xed, and γ2 is de�ned by these two so-called `hinges'

and has another one beforehand (cf. [22]). Then the so-called de�ciency set of γ1 and

γ2 is examined iteratively as indicated above.

Examining only the main pocket reduces the costs signi�cantly if VK(σ) has yet other

pockets with the number of vertices in the same order as the number of vertices in

the main pocket. Since the pockets with respect to the corresponding base point have

to be examined successively while constructing a CVD, similar improvements can be

made whenever a new CVD is computed. If the main lid λD equals ωD, which can be

easily checked by Theorem 3.4.19, we are done after only one step. As we are especially

interested in the window and not in all blocking arcs, only pairs of hinges in Kl and Kr

are chosen because the window is characterized by alternating sequences on the left and

right bordering set (see Theorem 3.4.19). Therefore, the search area can be decisively

restricted. As already indicated, an e�cient criterion to terminate the algorithm is given

by the unique representation in Theorem 3.4.19. This criterion can be easily checked by

examining the edges belonging to the corresponding node in the CVD.

Before we estimate the time complexity needed for determining the circular visibility set

VK(σ) and the window ωD, we present an example illustrating the strategy proposed.

Example. Considering the polygonal start-destination channelD ∶= (K,s, σ, d) depicted
in Figure 70, the main pocket is a CCW-pocket. Let a ∈Kl and b ∈Kr be the end points

of tr(s). The strategy of Chou et al. suggests to compute �rst the CCW-CVD of b and

to identify the arc γ1, which is associated with the window with respect to b. Since all

alternating sequences of γ1 have an alternating number less or equal two, ωD and the

window with respect to b are not equal. In the next step γ2, which is associated with the

window regarding a, is computed. Since γ2 has an alternating sequence of length 3, it is

a blocking arc with respect to D. However, both the last restriction and the endpoint of

γ2 are points of Kl. Therefore, γ2 is not associated with ωD (cf. Theorem 3.4.19), which

can be determined by examining the region between γ1 and γ2, as described in [22]. As

already mentioned, by Theorem 3.4.19 we have an e�cient stopping criterion.
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s

d

K

γ2

γ1

γ12

CCW-pocket

Main pocket

CW-pocket

CW-pocket

Figure 70: Polygon K and pockets (shaded) with respect to edge tr(s). Additionally, the circular

arcs generated by the algorithmic approach above are plotted. Note that the blocking arc γ12 has two

alternating restrictions in common with its predecessor γ2. Both touch the �rst edge on the right and

run through the 7th left vertex. The window can be constructed by examining the region between the

arcs γ1 and γ2 computed in the �rst two steps.
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4.3.3 The Time Complexity

Since computing the linear visibility and constructing a CVD can be done in linear time,

the complexity for determining blocking arcs of VK(σ) and for eventually computing

∂VK(σ) is shown by O(kn), where k is the number of CVDs required and n is the

number of vertices in K.

As already outlined in the previous subsection, we have found modi�cations to improve

the strategy and therefore the runtime of the algorithm in case of a start-destination

channel. However, in the worst case, k can only be bounded by the number of vertices

in LK(σ) and the main pocket, which is O(n).
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4.4 Circular Visibility of an Arc

Let (K,s, σ) be a starting channel, where K is a polygon with n vertices and s is an

oriented arc. The main idea for computing VK(σ) for a starting segment that is an arc

is to use the procedure we suggested in case of an edge, which was presented in the

previous section. As our mathematical results also hold in case of a circular arc, the

strategy used in this case is the same up to some modi�cations.

4.4.1 Sketch of the Overall Algorithm

We set a ∶= S(s) ∈ K and b ∶= E(s) ∈ K. As suggested in the previous section, we

�rst compute the linear visibility of LK(σ), which can be done in linear time according

to [39]. Every lid λ corresponds to a visibility line γ0 having an alternating sequence of

length 2. As we proceed in a complete analogy to the case of an edge, we only present the

`adjusting steps', which are possibly necessary: The starting points of all visibility arcs

can be determined by intersecting the corresponding circle with tr(s). When computing

a visibility arc γ starting at a or b, γ can be de�ned by examining the nodes of the

CVDs in K with basepoint a and b. However, it must be checked if it intersects tr(s)
at only one point. If this is not the case, an adjusting step is needed, which computes

the visibility arc touching s and having the same two last `hinges' (cf. Fig. 71). In order

to compute an arc γ touching s, at most O(n1) CVDs have to be supplied and the

intersection with the bisector de�ned by tr(s) and the respective basepoint of the CVD

has to be computed, where n1 denotes the number of vertices of VK(σ). The intersection
with the bisector is done since every circle with its center located on the bisector given

by s and a point p touches s and runs through p (cf. [22]).

In order to familiarize ourselves with the strategy proposed above, we give an example:

Example. Let us consider the situation of Figure 72 where s is the circular arc starting

at a and ending in b. The visibility line γ0 has the two restrictions b and a2 and γ1 is

the blocking arc associated with the window with respect to b. Using the restrictions

b and a2 as hinges, we get the circular arc γ2 touching s. Note, since γ1 touches the

�rst edge of K after b one restriction of γ2 can be found along this edge. Then only the

shaded region bounded between γ1 and γ2 needs to be examined in further steps. The

next circular arc γ3 passing through a3 and touching s is depicted on the right. As γ3
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s
a

b

a1

a2

a3

ls

γ2

γ1

Figure 71: The arc γ1 is a blocking arc with respect to b and ls but is not feasible with respect to s.

However, γ2 can be computed using the restrictions a2 and a3 of γ1 as hinges.

comes into contact with another right restriction a4, the hinges a3 and a4 are changed.

Finally, the blocking arc γ4 associated with the window with respect to s is constructed.

In case of a destination channel, where a destination segment d is given additionally, we

can improve our method.

4.4.2 Improvements for Start-Destination Channels

Let us denote the window with respect to a = S(s) ∈Kl and b = E(s) ∈Kr by ωa and ωb

respectively. Since almost the same argumentation can be applied in the case of d being

circularly visible from s by the results of Lemma 3.4.20, we can assume tr(d)∩VK(σ) = ∅.
Whether a visibility arc is the window with respect to (K,s, σ, d) or not, can be easily

checked by Theorem 3.4.8 and Theorem 3.4.19 respectively. Hence we can improve the

strategy. However, the worst case complexity doesn't change, and this is also true for

the edge case, as we already know.

As for instance the case of a starting arc appears when constructing the second till the

last segment of a continuous minimum arc path, it is reasonable to clip the polygon

to a subpolygon of K which includes tr(s) and tr(d) and has as a minimal number of

vertices. Thus, although clipping the polygon K doesn't change the time complexity

needed for computing a minimum arc path, we can improve the absolute runtime since
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a b

γ0
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a3 a3

a4

γ1

γ2

γ3

γ4

a b

Figure 72: Illustration for the strategy used for computing the circular visibility of an circular arc.

the complexity of input data is reduced. For this purpose, we distinguish between two

cases.

De�nition. Let s′ be the oriented arc with tr(s′) = tr(s) starting at a and ending in b.

Then s is said to be introverted if s′ is CW oriented, else it is called extroverted. (see

Figure 73).

Let us �rst assume that s is introverted. Then we can consider the line segment ls

de�ned by a and b, which is the chord of tr(s). Although this line segment does not

generally stay in IK , there are points a0 ∶= a, . . . , am ∶= b ∈ tr(s), which are enumerated

by the orientation of s, s.t. the corresponding line segments li ∶= [ai, ai+1] are subsets of
IK . When replacing s by the vertices {ai}i∈{0,...,m} and line segments li respectively, a

new polygon Q can be generated. We then clearly obtain tr(d) ⊂ Q, and therefore we

call Q a sub-polygon of K. Besides, K ∖Q is also a polygon.

Let J be the circle segment de�ned by tr(s) and ls, i.e. the region bounded by s and

ls, and let n2 be the number of vertices included in the connected component of J ∩ IK
containing tr(s). Denoting the number of vertices in VK(σ) by n1, we can ensure that

the inequality 1 ≤m ≤ max(n1, n2) for the minimal number m holds. However, in many

practical applications m is just 1 or 2 and therefore the number of vertices of Q is

considerably smaller than n (cf. Fig. 73). Likewise, we are also able to construct a
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s s
ls

Figure 73: Illustration of introverted (left) and extroverted (right) case. In each case, we consider that

s is the window of a previous step when computing a continuous minimum arc path. The subpolygon

Q is depicted by the solid lines.

polygon with quite a small number of vertices in the extroverted case, as indicated in

Figure 73 on the right.

4.4.3 The Time Complexity

Similar to Section 4.3, we can establish time complexity of O(kn1) = O(ln1), where k
is the number of CVDs computed and l is the number of vertices in Q. Eventually,

we can only ensure quadratic runtime. When computing ωD for a start-destination

channel D we may make some improvements, but in the worst case the time required is

still O(ln1) = O(n2).
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4.5 Continuation Channels and CVDs

Let (K,s, σ) be a continuation channel where K is a polygon with n vertices and s is an

oriented arc. We then have to distinguish between two cases. In the �rst one (K,s, σ)
is degenerate whereas in the second one it is not degenerate. In any case, we want to

use an approach for examining the corresponding blocking arcs which is similar to that

presented in the previous sections.

4.5.1 Sketch of the Overall Algorithm

First, let us focus on a degenerate continuation channel, where every blocking arc γ

has an alternating sequence (a1, a2, a3) of length 3 with a pseudo restriction point a1.

This pseudo restriction is given by the necessity of touching s, which is induced by

the degenerate unidirectional restriction map σ. In Section 4.3 and 4.4 we presented a

strategy for dealing with this problem: Compute CVDs for certain vertices and merge

them with the bisector of tr(s) and the respective base point of the CVD.

Hence we can center on the more sophisticated case of a non-degenerate continuation

channel. Although we would also be able to present an algorithm within the most

general scope, we focus on a continuation channel (K,sa, σa) for some a ∈ IK ∖ VK(σ)
s.t. V 2

K(σ) ∩ tr(d) = ∅, and we concern ourselves with the computation of the window

ω(a). If we have a start-destination channel D ∶= (K,s, σ, d) and a ∈ tr(d), this is exactly
the situation that sets in when computing a smooth minimum arc path; therefore it is

most important for our interests.

Let (a1, a2, a3) be the a-adapted alternating sequence of γ(a). W.l.o.g. we can assume

a2 ∈ Kl and a3 ∈ Kr and de�ne s1 ∶= [a2, a3]γ and s2 ∶= tr(ω(a)) (cf. Figure 74). Fur-

thermore, we can assume windows η1, . . . , ηm corresponding to blocking arcs reaching

V a
K(σ). Although Ka is not a polygon, we can use the algorithms introduced in the

previous sections. For this purpose, we �rst summarize the essential steps and illustrate

the strategy by two examples later on.

Let K ′
a be a subpolygon of K including Ka, which can be generated by a strategy

similar to the one introduced in the previous section. We �rst compute the blocking arc

γ1 which is associated with the window with respect to s1 and a in K ′
a, as suggested in

Section 4.3 and 4.4 respectively, depending on whether γ(a) is a line segment or not. If

this arc stays inside IKa , which can be checked by an intersection test with η1, . . . , ηm, the
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s1
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a3

η1

η2

γ(a)

Figure 74: Continuation channel (Ka, sa, σa); solid line: Ka; γ
(a) blocking arc of a.

starting restriction σa is satis�ed automatically, and hence it yields the desired window.

If not, we have S(γ1) = a3 (cf. Figure 76) or γ1 doesn't stay in IKa . In the latter case,

γ1 intersects an ηi for some i = 1, . . . ,m, and we compute the blocking arc γ′1 which

is associated with the window of (K ′
a, ηi, σi), where σi is the degenerate unidirectional

restriction map of ηi. Then we check if γ′1 and γEa are equal.

It remains to consider the case S(γ1) = a3. In this case, we compute the blocking arc γ2

of a regarding the channel E′
a ∶= (K ′

a, s2, σ
′), where σ′ is the degenerate unidirectional

restriction map of s2. Then the starting point S(γ2) is a pseudo restriction with respect

to E′
a and a left/right restriction with respect to Ea. If A(γ2) = 2 with respect to Ea, we

have γ2 ≠ γEa . However, in this case γEa is located in the de�ciency set of γ2 and γ1 or

γ′1 respectively. Thus, it can be computed with the methods introduced in the previous

sections.
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a

a2 a3

η

γ(a)

γ′Ea
γEa

Figure 75: Algorithmic approach to a continuation channel Ea ∶= (Ka, sa, σa). The blocking arc γEa

can be computed by the requirement of touching the blocking arc η.

We now illustrate our algorithmic approach in case of a non-degenerate continuation

channel by giving two examples:

Example. Let us assume the situation in Figure 75, where a non-degenerate contin-

uation channel Ea ∶= (Ka, σa, sa) with a window η reaching V a
K(σ) is visualized. The

window with respect to (K ′
a, s, σ) isn't equal to the window ωEa since the corresponding

blocking arc γ′Ea has an intersection with tr(η)∩IK ∖ VK(σ) and therefore it doesn't stay

in IKa . The window ωEa can then be obtained by the requirement of touching η.

Figure 76 shows another example of a continuation channel Ea ∶= (Ka, sa, σa) de�ned by

the blocking arc γ(a), which has the a-adapted alternating sequence (a1, a2, a3). As the
starting point of the blocking arc γ1, which is associated with the window with respect

to s1 and a, is a3, γ2 is computed, as suggested above. In this example, the blocking arc

γEa is located in the de�ciency set of γ1 and γ2. Hence it can be found by the strategy

proposed by Chou et al., which we introduced in Section 4.3 and 4.4.

The whole strategy for computing ωEa is summed up in Algorithm 6.

In order to improve the readability, we keep o� a detailed algorithmic description for

the computation of the circular visibility set of an arbitrary continuation channel, as

already mentioned. Moreover, the procedure for an arbitrary continuation channel can

be deduced from all methods introduced, and it works in a complete analogy.
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Algorithm 6 Computation of the window ωEa

Input: Continuation channel E ∶= (K,s, σ); γ(a) with a-adapted alternating se-

quence (a1, a2, a3); windows ν1, . . . νm reaching V a
K(σ);

Output: Window ωEa

1: Construct s1 and s2

2: Ea ← (Ka, sa, σa)
3: if Ea is degenerate then

4: Compute ωEa by intersecting CVDs with the bisector de�ned by s2

and the respective basepoints

5: return ωEa

6: end if

7: Construct K ′
a

8: Compute window ω1 and corresponding blocking arc γ1 w.r.t. s1

9: if tr(γ1) ∩ tr(νi) for some i = 1, . . . ,m then

10: ω1 ← window w.r.t. degenerate channel of νi

11: γ1 ← corresponding blocking arc

12: end if

13: if ω1 equals ωEa then

14: return ω1

15: end if

16: Compute the window ω2 and the corresponding blocking arc γ2

w.r.t. the degenerate channel given by s2

17: if ω2 equals ωEa then

18: return ω2

19: end if

20: Compute ωEa using the hinges given by γ1 and γ2

21: return ωEa
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s1
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a3γ(a)

γ1

γ2 γEa

Figure 76: Algorithmic approach to a continuation channel Ea ∶= (Ka, sa, σa). The blocking arc γEa is

located in the de�ciency set of γ1 and γ2.

4.5.2 The Time Complexity

For both cases, the degenerate and the non-degenerate one, we can ensure a time com-

plexity of O(kn), where k is the number of CVDs computed. The complexity needed in

the degenerate case has already been estimated in Section 4.4.

Assuming an arbitrary tolerance channel E ∶= (K,s, σ), a point a ∈ IK ∖ VK(σ) and the

corresponding continuation channel Ea = (K,sa, σa), we can even give a preciser estimate

than O(kn). By the same argumentation as in the previous sections, we obtain: The

number of all CVDs which have to be computed at most is bounded by the number of

vertices l in VK(σ) ∪VKa(σa) ∪VKa(σ2), where σ2 is the starting restriction given by s2.

When testing if the computed window is equal to ωEa , we possibly have to check if the

starting condition σa is satis�ed, which can be done in O(1), and do the intersection test

with the blocking arcs η1, . . . , ηm, which requires O(m) = O(l) time. Hence the window

ωEa can be computed in O(l(n +m)) = O(ln) time. However, in many practical tests

the number of CVDs to be computed averages just about two or three.

We can deduce similar results for an arbitrary continuation channel, which is not nec-

essarily induced by a blocking arc computed in any previous step, but we don't explain

this general case in detail here.
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4.6 Minimum Arc Paths and CVDs

Let D ∶= (K,s, σ, d) be a start-destination channel with a polygon K, which has n

vertices, and we set E ∶= (K,s, σ). We now summarize the several steps for computing

a (smooth) minimum arc path. In the previous section we have seen how to implement

the several steps of Algorithm 1 and 2 in case of a polygon e�ciently by using CVDs,

and we now estimate the overall complexity for this implementation. We �rst concern

ourselves with the computation of a smooth minimum arc path.

4.6.1 The Smooth Case

Let us assume that we have already found the window with respect to the start-

destination channel D. Then in every subsequent step, we have to consider the con-

tinuation channel Ei, which is of the type (Ka, sa, σa) for some a ∈ tr(d) not circularly

visible in the current step. Hence the situation discussed in the previous section is

given in every step since we concerned ourselves with both the degenerate and the non-

degenerate case. Carrying on till tr(d) is circularly visible, we characterize the whole

forward step of Algorithm 1. We can apply the proceeding of Section 4.5 in every it-

erative step. Roughly speaking, the particular continuation channels, which have to be

considered, don't overlap too much. Since we can always achieve a 'uniform distribution'

of the breakpoints (cf. Corollary 3.6.16 and Theorem 3.6.20), we have to invest O(nni)
time in every single step, where ni is the number of vertices in V i+1

K (σ) ∖ V i−1
K (σ) with

V 0
K(σ) ∶= tr(s). Thus, the time required for the forward step when computing a smooth

minimum arc path is
N

∑
i=1

O (nin) = O(n2),

where n0 ∶= 0 and N is the minimal number with V N
K (σ) ∩ tr(d) ≠ ∅. Note that we have

N ≤ n(d), but in general these numbers are not equal, where n(d) is the number de�ned
in De�nition 3.7.2.

In the backward step we get all the predecessor segments by constructing an arc with

two alternating restrictions and smoothly joining its successor. For this purpose, we

just have to examine degenerate continuation channels given by the successor segment

and check the requirements of the channels Ei with E1 ∶= E. These requirements are

given by the continuation condition for the corresponding predecessor or the starting
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condition σ given by s respectively. Additionally, it has to be checked whether the

current segment stays inside the corresponding tolerance channel or not, which can

be done by an intersection test with blocking arcs: Considering that we have already

computed the i-th segment γi of our interim1 minimum arc path γ1⋯γN , we can construct
the segment γi−1 by examining the blocking arcs of the degenerate continuation channel

given by γi and the sub-polygon including s, which satisfy the (D)CC of Ei induced by

(i − 1)-th blocking arc or s for i = 1. Since ∑N
i=1 ni = O(n), the whole backward step

needs
N

∑
i=1

O(nin) = O(n2)

time as well.

If necessary, γ1⋯γN has to be smoothed. Considering a non-smooth breakpoint ai, we

can assume w.l.o.g. that ai ∈ Kl. After computing the distance δ ∶= dist(ai,Kr), which
costs O(n), we can construct a biarc γ̃ smoothly joined to γi and γi+1 with tr(γ) ⊂ Bε(x)
for some x ∈ IK and ε < δ/2 s.t. Bε(x) ⊂ IK . Since this procedure can be done in O(1),
the complexity for the complete smoothing step can be bounded by O(Nn), and we

have N < n.

Altogether, we can show a quadratic runtime complexity depending on the number of

vertices n but not on the number of segments N . However, in our practical tests we

discovered a sub-quadratic runtime.

In the second subsection, we discuss the algorithmic details of computing a continuous

minimum arc path in a polygonal start-destination channel. Again, we estimate the

time complexity needed.

4.6.2 The Continuous Case

Due to Algorithm 2, we have to compute the window of the constantly shrinked polygon

with respect to the previously calculated window in every single step when constructing

a continuous minimum arc path. As we have seen in Section 4.3 and 4.4, the time

required for determining the window with respect to a given edge or arc s is O(kn),
where k is the number of CVDs computed. If γ1, . . . , γN is the sequence of circular arcs

computed by Algorithm 2, the total time required is O(kn) with k ∶= ∑N
i=1 ki, and ki is

1Possibly the resulting path is a generalized visibility spline with some non-smooth breakpoints, which

means N < n(d).
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number of CVDs constructed in the i-th step. As ki is limited by the number of vertices

ni in VKi(σi) ∖ VKi−1(σi−1) depending on the (i − 1)-th window ωDi−1 (cf. Section 3.7),

the worst-case total time is (n0 ∶= 0):

N

∑
i=1

O((nin) = O(n2),

since O(∑N
i=1 ni) = O(n) holds.

Note that the overall time does not depend on the number of segments needed but only

on the number of vertices. Similar to the smooth case, practical examples mostly show

a sub-quadratic runtime performance.

Note that both the smooth and the continuous case yield a quadratic algorithm, although

the computing of a smooth minimum arc path is much more sophisticated. As a matter

of course, the absolute runtime in the smooth case is higher than the absolute runtime

in the continuous case, when considering the same start-destination channel.
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4.7 Summary and Experimental Results

4.7.1 Summary

In this chapter, we have thoroughly discussed the algorithmic implementation of the

mathematical results presented in Chapter 3. We have described e�cient algorithms

to generate a continuous and smooth minimum arc path. In general, Algorithm 1

and 2 work for every start-destination channel bounded by a piecewise restricted analytic

curve. Concerning a simple polygon with n vertices, we have shown that both a smooth

and a continuous minimum arc path can be computed in O(kn) = O(n2) time, where k

is the number of CVDs required. In many practical applications k has the same order as

the number of segments N , and N is considerably smaller than n, as already mentioned.

In the next subsection, we present some test results, which show this coherence.

4.7.2 Test Results

We have evaluated the performance of the presented algorithms in several scenarios

and mainly focused on polygonal channels for our tests. Nevertheless, we have also

implemented an algorithm that computes a smooth and continuous minimum arc path

in start-destination channels given by an arc spline. However, we waived an e�cient

implementation in this case.

Figures 77, 78 and 79 show two examples of these test scenarios. For each polygon, we

compared the number of segments and the CVDs needed regarding a minimum link,

a continuous and a smooth minimum arc path. The particular numbers are listed in

Table 4.1.

Scenario Number of min. link continuous smooth

Polygon 1 segments 29 18 29

with 1047 vertices CVDs - 54 108

Polygon 2 segments 13 9 17

with 61 vertices CVDs - 20 40

Table 4.1: Two exemplary test scenarios, which are visualized in Figure 77-79.

In Chapter 5 we present further examples and show how our algorithm can be used for

approximating real data extracted from digital images or curves.
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Figure 77: Example of two start-destination channels given by simple polygons and corresponding

minimum link path. Top: 1047 vertices; 29 line segments. Bottom: 61 vertices; 13 line segments.
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Figure 78: Example of two start-destination channels given by simple polygons and corresponding

continuous minimum arc paths. Top: 1047 vertices; 18 segments; Bottom: 61 vertices; 9 segments;
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Figure 79: Example of two start-destination channels given by simple polygons and corresponding

continuous smooth arc paths. Top: 1047 vertices; 29 segments; Bottom: 61 vertices; 17 segments;
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5
APPLICATIONS

In this chapter we thoroughly discuss various applications of minimum arc paths. We

mainly sketch how the algorithms presented in the previous chapter can be used for

Reverse Engineering, Object Detection and Curve Approximation. Furthermore, we

point out the advantages of the usage of smooth arc splines as approximating curves

within the scope of these applications.

Since we deal with contours of digital (grey scale) images in our applications, we roughly

explain what contours are and how they can be represented conveniently in section 5.1.

A suitable way of encoding contours yields an e�ective base for all the applications

discussed here. As there are many well-known methods for representing contours, we

introduce some of them and compare them with our approach, which suggests a descrip-

tion by arc splines.

In all the application examples we present, the starting situation is always the same. We

consider a list of points, wherever they were extracted from, and want to approximate

them by a (smooth) circular arc spline. With respect to a maximum error, we are seeking

for a solution with the minimum number of segments. As we want to use the algorithms

`He who loves practice without theory is like the sailor

who boards ship without a rudder and compass and

never knows where he may cast.'

(Leonardo da Vinci, Italian polymath)
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presented in Chapter 4, we elucidate the design of suitable start-destination channels in

Section 5.2.

Representing shapes by (smooth) circular arc splines is an e�cient approach for detecting

search objects in grey scale images. Hence we illuminate the �eld of Shape Recognition

in Section 5.3. Thereby, we only amplify the coding of the search objects and don't

present a complete method for detecting and classifying an object.

In Section 5.4, we address the problem of generating a masterpiece of an object by

smooth circular arc splines. In contrast to the outline already given in Section 1.1,

we focus on the issue of using such a masterpiece for visual quality control and vision

metrology in manufacturing.

In the last section of this chapter, we describe how to use almost the same algorithmic

approaches in order to approximate arbitrary curves, like polygons, NURBS or graphs

of a real valued function, by smooth circular arc splines.
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5.1 Edge Contours and Forms of Representation

For almost all the applications we subsequently elucidate, we consider contours or con-

tour lists respectively that have been extracted from a camera image. However, before

we start our discussion on how to approximate them by a smooth arc spline, we reason

what is understood by contours in Computer Vision. For this purpose, we have to use

some standard notions from Computer Vision. Since an introduction of all basic terms

would go beyond the scope, we refer the readers unfamiliar with these notions to further

literature (e.g. [42, 50, 66]).

We mainly devote ourselves to two questions: How to de�ne contours and how to encode

them?1

5.1.1 What are contours?

In literature no uniform answer to this question exists, although the detection of edges

is a central problem in Computer Vision and Image Processing since edges mark the

borders of objects which are observed by a camera.

Algorithms for extracting bounding curves of image `objects' are usually called edge

detectors. Depending on the application, the requirements of edge detectors vary con-

siderably, but most of them search for pixel indices with high values of the gradient

norm which results from some local approximation of grey values. One of the standard

methods for edge detection is the Canny Edge Detector 2 (cf. [18]). The problem of

the Canny Edge Detector and most of the other methods is the choice of parameters

which are required. The output of an edge detector usually consists of many pixel in-

dices, some of them being parallel to the same edge. Non-maximal suppression3 is an

approach which yields a representation of edges with a width of one pixel.

However, the term `contour' is not de�ned this way. Figuratively speaking, contours

are outlines or boundaries of objects in a real scene which are observed by a camera

image. Since they yield steep grey-scale transitions if somewhat articulate contrast is

1The following overview mainly follows [66] and [50].

2Canny considered the mathematical problem of deriving an optimal smoothing �lter given the criteria

of detection, localization and minimizing multiple responses to a single edge.

3Non-maximum suppression means that given the presmoothing �lters, edge points are de�ned as

points where the gradient magnitude assumes a local maximum in the gradient direction (cf. [18]).
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given, positions of the image with absolute large gradients are examined. Obviously,

the term 'gradient' is well-de�ned only for stepless functions. Also, the contours should

not depend on any thresholds. An approach to an exact de�nition can be found in [66].

Using this de�nition in the non-discrete case, the contour points are a union of the traces

of some curves. Due to the digitalization of an image, the contours are not given by

continuous functions but only by so-called contour point lists . Due to De�nition 5.2.15

in [66], it is legitimate to perceive a contour point list as a �nite family (pi)1≤i≤k of

pairwise distinct points in R2 s.t. the polygonal curve passing through these points,

starting at p1 and ending in pk is simple or a Jordan curve. If p1 and pk are neighbors

regarding the Moore neighborhood (cf. [42]), we call it closed.

To sum it up, edge detection results in a sequence of adjacent contour pixels. If bifur-

cations and crossings are omitted, the pixel positions of a single contour sequence are

supposed to belong to the same curve (cf. [66]).

Now we can concern ourselves with answering the second question: How to encode

contours?

5.1.2 Encoding contours

The simplest representation of a contour is using an ordered list of its edge points. This

is as accurate as the location estimates for the edge points. However, a contour point

list isn't a very compact representation and it is not very e�ective for subsequent image

analysis.

A more powerful representation is �tting an appropriate curve which has some analytical

description, like line segments, circular arcs or conic segments. For instance, �tting a

line to a set of edge points that lie along a line, results in a considerably more compact

and e�cient representation for subsequent image analysis. When talking about curve

�tting, we have to be more precise. Do we want to interpolate or approximate the curve?

Curve interpolation methods are more appropriate when the edges have been extracted

accurately. However, in practice, curve approximation methods yield better results

because the edge locations can not be extracted very accurately because of e.g. digitizing

e�ects. Using mathematical curve descriptions to approximate such a sequence of pixels

results in a compact and e�ective representation and, therefore, it is useful for shape

representation (cf. [12]), data reduction (cf. [67]) and feature extraction (cf. [52]). The
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approximating curve can also be used for structural analysis of the sequence of pixels

and is very useful for Reverse Engineering techniques.

When dealing with approximation tasks, we have to tell how the approximation error is

de�ned, which means how to measure the error between the pixel positions p1, . . . , pn ∈ R2

and the approximating curve γ. For instance:

� The mean squared error gives an overall measure of the deviation of the curve

from the edge points since it is de�ned by

1

n

n

∑
i=1

dist(pi, tr(γ))2.

� The normalized maximum absolute error regards the ratio of the maximum abso-

lute error to the length of the curve. Therefore, the error becomes independent of

the length of the curve L ∶= len(γ). It is de�ned by

1

L
max{dist(pi, tr(γ)) ∣ i ∈ {1, . . . , n}} .

� The maximum absolute error, which measures how much the points deviate from

γ in the worst case, is given by

max{dist(pi, tr(γ)) ∣ i ∈ {1, . . . , n}} .

How to measure the error is a question of modeling and we will provide an answer to

that question later on.

We also have to de�ne which class of curves we want to take into account. To obtain

compatibility with CAD-representations, the curve should consist of basic primitives

such as line segments and circular arcs (cf. [79]), i.e. an arc spline. Due to [42], reasonable

�tting models are polygonal curves, arc splines or conic splines.

Using line segments leads to a polygonal representation that �ts the edge points with a

sequence of line segments. Thus, the contour is represented as a polygon which inter-

polates a selected subset of edge points. In general, there are various ways to compute

the polygonal approximation of a contour:1

A representation by polygonal curves is more economical than using edge points. We can

make the error as small as desired by splitting the contour into very small line segments.

1For a detailed description have a look at e.g. [50].
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Once an edge list has been approximated by line segments, subsequences of the line

segments can be replaced by circular arcs. This involves �tting circular arcs through the

endpoints of two or more line segments. Of course, the number of segments decreases

this way, but it is still relatively large. In any case, arc splines are very suitable for

representing contours since they are invariant with respect to translation, rotations and

scalings (cf. Proposition 2.5.28), and their curvature functions are piecewise constant.

Conic sections1, which correspond to zero sets of second degree polynomials, allow more

complex contours to be represented by fewer segments; however, the computational

complexity increases.

Both the number of segments and the accuracy of an approximation are important

criteria. As the approximation error diminishes if the number of segments increases, we

have to tackle a multi-objective problem. Contour pixels can be extracted only with a

certain accuracy. Therefore, the contour approximation problem can be formulated by

specifying a tolerance and looking for the smallest number of curve segments s.t. the

error of approximation does not exceed the given tolerance (cf. [81]). Hence we consider

an approximation problem with respect to the maximum absolute error as de�ned above.

In order to compute an approximation s.t. the determined arc spline is within a speci�ed

(possibly locally varying) tolerance ε > 0 to the pixel positions, developing a suitable

start-destination channel and computing a smooth minimum arc path lends itself as a

good solution. Therefore, the next section is dedicated to the development of suitable

tolerance channels.

1For instance, segments of hyperbolas, parabolas and ellipses are conic sections. An exact de�nition

can be found in Chapter 6.
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5.2 Design of Suitable Channels

We suppose a �nite family of points (p1, . . . , pN) with P ∶= {p1, . . . , pN} s.t. the polygonal
curve ω successively passing through the points pi, starting at p1 and ending at pN is

simple. The cyclic case, i.e. P is supposed to lead to a Jordan curve, can be done

analogously. As already indicated, we address the approximation of P by a (smooth)

arc spline with a minimal number of segments under the constraint of satisfying the

bounding requirements of an error function. Hence we consider the optimization problem

min
γ∈S∞ ∣γ∣ subject to Φ(tr(γ), P ) < C

for some C > 0 and error function Φ. As justi�ed beforehand, dealing with the maximum

norm

Φ(tr(γ), P ) = max
i=1,...N

dist(pi, tr(γ))

or the Hausdor�-distance of tr(ω)

Φ(tr(γ), tr(ω)) = h(tr(γ), tr(ω)) = max( max
x∈tr(ω)

dist(x, tr(γ)), max
x∈tr(γ)

dist(x, tr(ω)))

would be appropriate. Choosing one of these proposed norms, it isn't sure if there exists

a constructive solution to the optimization problem formulated above at all. Also it isn't

clear how such an approach should look like. Hence we concern ourselves with the design

of a suitable start-destination channel D and use the methods proposed in Chapter 4.

However, computing a smooth minimum arc path ofD is not necessarily equivalent to the

problem formulated above. Nevertheless, this approach has a considerable advantage.

We are able to control the behavior of the approximating curve between each two points

pi and pi+1 by the bounding channel. This way we also get geometric constraints, which

can be locally varied in quite an easy manner and are easier to modify than constraints

de�ned by a metric or norm.

5.2.1 O�set Channels

When computing an approximation s.t. the determined arc spline is within a speci�ed

tolerance ε > 0 to the pi, the o�set Ωε(ω) = {a ∈R2 ∣ dist(a, tr(ω)) = ε} of the polygonal

path ω can be considered (e.g. Figure 80). In Remark 2.5.30, we have already mentioned

that for su�ciently small ε, the o�set curve of a polygonal is an arc spline. If we want
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s dp1
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p4

p5

p6

Figure 80: Polygonal path from p1 to p6 and o�set curve (dashed arc spline) for some ε > 0; s and d

are two line segments passing through p1 and p6 respectively.

to use our CVD-based approach, we can again approximate the arcs in the o�set by a

polygonal path (see Figure 80) in order to obtain a polygon channel, where mostly the

semi-circles at p1 and pN are replace by a start and a destination line segment. Generally

speaking, the ε-O�set is a region formed from strips of width 2ε which are centered at

the polygon edges. Thus, in a neighborhood of sharp corners this doesn't guarantee

that the curve remains close to the given points. Therefore, Drysdale et al. suggest a

so-called polygonal tolerance region in [33]. They also want their approximating curve

to have distance at most ε > 0 from tr(ω). Figure 81 shows an example of a polygonal

tolerance region, which ensures h(tr(γ), tr(ω)) ≤ ε for every curve γ from tr(s) to tr(d)
staying inside the closure of this region.1 Although the channel depicted in Figure 82

might not exactly guarantee a Hausdor� distance less or equal ε, it is appropriate if P

doesn't yield sharp corners. Furthermore, it can be computed straightforwardly and is

su�cient for most applications with real data.

The corresponding restriction maps σ arise from the continuation channels de�ned by

the constructive approach for computing a (smooth) minimum arc path. If we have some

preliminary knowledge of some parts of the curve which should be our result, we can

�exibly adapt the tolerance channel passing through this part. For instance, knowing

that in a certain neighborhood there should be a line not an arc segment, we can search

for the linear window in this area. Furthermore, if we want the approximation to have

vertices, we choose the tolerance channel located in a corresponding neighborhood to be

a starting not a continuation channel.

1A more detailed description can be found in [33].
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pi

pi+1

Figure 81: Polygonal tolerance region. The bends at pi and pi+1 are shortcut in order to guarantee the

approximating curve having at most distance ε from tr(ω), which is indicated by the grey circles with

radius ε.

ε

Figure 82: Approximation of an ε-O�set.
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5.2.2 Other Channels and Preliminary Approximations

Varying the width at di�erent points can also be taken into account if at some local

parts of P there are di�erent tolerance requirements. Held and Eibl propose asymmetric

tolerance bands, which are important for approximations used by NC machines1 (cf. [46]).

Furthermore, probabilistic approaches lead to a conic spline as bounding curve.

In fact, we would be able to continue this list of reasonable tolerance channels almost

perpetually. However, the design of suitable channels depends considerably on speci�c

applications. Since we have chosen the very broad class of piecewise Rω curves as valid

bounding channels in our theoretical part, we can practically cover all types of curves

which can be represented by computers.

In any case, it makes sense to reduce the complexity of input data by a pre-approximation.

As computing a minimum link path can be done in linear time, we could consider an

o�set channel with width ε (radius ε/2) resulting in polygonal curve ω. When o�setting

the curve ω again, we can de�ne another start-destination channel having less vertices.

Furthermore, the Douglas-Peucker algorithm reduces the number of points P (cf. [32])

and yields a subset P ′ of P with h(tr(ω′), tr(ω)) ≤ ε, where ω′ is the polygonal curve

running through P ′. Although there is no warranty that P ′ has the minimal possible

number, the algorithm performs very well in practical applications.

As outliers might appear because of errors during the capturing process, it is also rea-

sonable to pre-approximate the original points P regarding least squares, which can be

done, for instance, by using a curvature estimator (cf. [66]).

Having computed a smooth minimum arc path within a possibly reduced start-destination

channel, we obtain an approximation of P by a smooth arc spline γ. If desired, we can

use γ as a starting solution for a non-linear optimization problem which aims at mini-

mizing the least squares error regarding P subject to the �xed breakpoints of γ.

1`NC' is an abbreviation for `numerically controlled'.
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5.3 Shape Recognition

Whereas distinctive points of images yield 0-dimensional structures that are suitable for

matching, contours can be used as 1-dimensional search-structures for the recognition

of a transformed object. They are also crucial for describing a detected object.

Automatically determining the geometry of a detected object is achieved by placing it

in some pre-established classi�cation which is the preliminary knowledge. Algorithms

try to compare the detected object to known ones. This classi�cation is called shape

recognition1 . In other words: If we have a set of prototype objects, we want to know

which one the detected shape matches best. This raises at least two questions:

� What kind of properties should a shape recognition algorithm satisfy?

� What kind of representation do we take for a shape?

Due to D. Marr (cf. [56]), object recognition demands a stable (insensitive to noise)

description that hardly depends on the view point. Although Marr didn't give prac-

tical algorithms for shape representation, he initiated an axiomatic approach, which is

generalized in [19] as follows:

First, the distance between two objects should not depend on the way they are rep-

resented. The most important property is invariance. Therefore, we consider a set of

feasible transformations (e.g. rotations and translations). Stability is another criterion,

meaning the invariance regarding noise. Hence it seems natural to smooth the shapes.

It is fairly obvious that an algorithm will be more e�cient and fast if the amount of

input data is small.

In shape recognition tasks the comparison of two contours is necessary. Since a compar-

ison point by point is too complex, an encoding which supplies a fast comparison has

to be found. Curvature would be suitable for that since it is invariant with respect to

rotations and translations. However, it can only approximatively be determined from

contour points. One possibility is, to �rst approximate the contour points e.g. by a

smooth arc spline and then compute the curvature function. Since the corresponding

curvature function is a step function, a relatively simple form of encoding is possible.

This way, the axioms given above are all satis�ed.

1This summary partly follows [19].
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We can approximate the contours of our prototype object by a smooth arc spline if we

compute a smooth minimum arc path γ ∶= γ1⋯γn of a suitable start-destination channel

and compute the curvature of γ, which can be done very easily (cf. Proposition 2.5.31).

We can proceed analogously if the contour we consider is cyclic. Figure 83 shows an

example of window frames, which is taken from [66]. However, our algorithm does not

stand up to the runtime requirements of real time applications. This isn't a problem

when generating the prototype, but when approximating the curvature of an arbitrary

object which is compared to the prototype, we follow the method proposed in [66]. If

(y1,⋯, yN) is the contour of an object which is supposed to correspond to the prototype

contour with the approximation γ, then we compute the curvature characteristic of

(y1,⋯, yN), which is, in fact, the curvature function of the arc length parametrization

of an arc spline approximating the points y1,⋯, yN .
The whole method results in the comparison of two step functions κ1 and κ2 modeling

the curvature of the prototype contour and another contour. When dealing with closed

contours, we extend κ1 and κ2 periodically since the starting point S(γ) and the �rst

contour point y1, generally, don't correspond. In any case, Pisinger gives an e�cient

comparison of such two curvature functions in [66], where it is crucial that the functions

consist of as few steps as possible.

Using this comparison method, a classi�cation of search objects can be implemented

e�ciently. A subsequent prototype matching, which is based on a mutual minimization

(cf. [43]), can use the result computed by the method above as initial value. The next

section concerns, among others, this kind of `alternating prototype matching'.
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start

Figure 83: Approximation of the inner contour of a window frame and corresponding curvature func-

tion. Top left: Reworked image with high contrast. Top right: Extracted contours. Bottom left:

Approximation of the inner contour (orange) by a smooth arc spline. Bottom right: Corresponding

curvature function.
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5.4 Reverse Engineering

In industrial manufacturing we often encounter the case that the produced piece doesn't

�t very well to the CAD-design because of variances during the production process.

Sometimes there doesn't even exist a CAD-drawing. In any case, the automatic genera-

tion of CAD-layouts of industrially manufactured workpieces is a crucial step in Reverse

Engineering, especially for quality assurance purposes and for extracting the commands

needed to operate CNC machines1 for production.

We subsequently discuss an approach to generating a so-called masterpiece2 or rather

a CAD-layout of it, and we show how this serves in optical quality control and vision

metrology. For instance, it can be used for target-performance comparisons of planar

geometries like laminations, panes of glass and planks of shelves.

5.4.1 Generation of a Masterpiece

In fact, many approaches assume that the working pieces observed by a camera are

planar (e.g. [48]). As already mentioned in Section 1.1, it is appropriate to code the

detected contours by arc splines, since they are invariant with respect to rotation, scal-

ings and translations and stand out due to their easy o�set computation. Furthermore,

arc splines are often used as the description of tool paths of CNC machines. When

programming a CNC tool path, fewer arc segments can help to improve the production

e�ciency by reducing the number of instructions and tool motions (e.g. [62]). Hence

computing a (smooth) minimum arc path is an appropriate approach.

If we want to derive (a draft of) a masterpiece with an accuracy given by a maximum

error ε > 0, the very �rst step is to extract the contours of a digital image which results

when capturing the masterpiece. Since we are situated in an industrial environment, we

can take proper illumination and high accuracy of the detecting system as a starting

point. Thus, accurate input data can be expected, possibly after a preprocessing step.

Next, we design a start-destination channel sticking to the tolerance ε. Which of the

approaches for developing a channel proposed in Section 5.2 should be chosen, depends

1CNC stands for computer numerical control. Numerical control (NC) refers to the automation of

machine tools that are operated by abstractly programmed commands encoded on a storage medium.

2A masterpiece is a specimen of a working piece with the exact size required. Often, the corresponding

CAD-layout is also called `masterpiece'.
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on the requirements of the masterpiece and on the desired exactness. In any case, we

then compute a smooth minimum arc path for every contour list and export it as a CAD-

drawing. As this process can be done o�-line, it needn't satisfy real time requirements.

Before we elucidate how to use a masterpiece for optical quality control, we show two

examples.

Example. In Figure 84 we can see the approximation of the shape of garden scissors

by a minimum arc path and a minimum link path. In this example we have focused

on the external contour. All the other contours can be approximated in the same way.

Ten arcs are needed on the one hand and 17 line segments on the other hand. The

line representation not only su�ers from a higher number of segments but also yields no

realistic draft of the real image. Although the number of vertices is nearly 400, only 19

CVDs have to be computed to obtain the arc spline depicted. This averages out about

two CVDs per step of the algorithm.

The second example is not taken from an industrial setting, but it also shows an inter-

esting model.

Example. The shape of a hand, which has been extracted from a camera image with

a resolution of about 640x480 pixels, is approximated by a smooth arc spline with 35

segments. The maximum distance from the shape to the contour points is about 0.5

pixels, which corresponds to about 0.2 mm (cf. Figure 85). The corresponding start-

destination channel has been constructed after a pre-processing step as proposed in

Section 5.2. It has about 400 vertices. The following table summarizes the results at

di�erent tolerance levels. Figure 86 compares a continuous to a smooth solution.

Tolerance Number of segments Number of CVDs

2 px 12 39

1 px 20 67

0.5 px 35 112

0.2 px 61 207

Table 5.1: Approximation of the shape of a hand by a smooth arc spline.
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Figure 84: Approximation of a part of garden scissors. Top left: Original image. Top right: Reworked

copy with higher contrast. Middle: Approximations of the external contour by lines (left) and by arcs

(right) with respect to the same polygon containing the extracted contour points of the shape. Bottom:

Enlarged details of the two approximations.
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Figure 85: Approximation of the shape of a hand. Polygonal channel (dotted) approximating the

ε-o�set of the extracted points with ε = 0.5. The corresponding smooth minimum arc path (orange)

needs 35 segments.
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Figure 86: Comparison of continuous and smooth approximation; tolerance: 0.5 pixels. Left: Continu-

ous arc spline with 28 segments. Right: Smooth arc spline with 35 segments.

We now concern ourselves with the usage of a masterpiece for quality assurance purposes.

Therefore, an e�cient approach to comparing the masterpiece with an arbitrary working

piece detected on a line of a factory is needed.

5.4.2 Quality Control and Vision Metrology

When we consider an arbitrary working piece, its position is not the same as the location

of the masterpiece, i.e. the observed object might be rotated, translated and even scaled.

W.l.o.g. we can assume that the computed masterpiece is the trace of only one arc

spline γ ∶= γ1⋯γN . If y1, . . . , yn are the contour points of an observed working piece, we

search for a motion Φ ∶ R2 → R2 minimizing the sum of squares ∑n
i=1 dist(Φ(tr(γ), yi)2.

Naturally, the existence of such optimal motions can only be assured if we make some

restrictions and assumptions on the feasible transformations. Here we focus on motions

that consist of translations, isotropic scalings1 and rotations, which are mappings of the

1By an isotropic scaling a function gα ∶R
2 →R2, x↦ αx for some α ∈R is meant.
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form

T ∶R2 →R2, x↦ λ ⋅
⎛
⎜
⎝

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

⎞
⎟
⎠
⋅ x +

⎛
⎜
⎝

ϑ1

ϑ2

⎞
⎟
⎠
,

where ϕ ∈ [0,2π[ and λ,ϑ1, ϑ2 ∈ R. We denote the set of all these mappings by T and

note that these function can also be written in the form

Tc,s,t ∶ R2 → R2, x↦ Ac,s ⋅ x + t

with scaled rotation

Ac,s ∶=
⎛
⎜
⎝

c −s
s c

⎞
⎟
⎠
for all c, s, ∈R.

and translation t ∈ R2. Hence we search for optimal parameters c, s ∈R and t ∈R2.

Then, the problem formulated above can be solved very fast by an iterative approach.

First, we use the method proposed in Section 5.3, which is based on curvature charac-

teristics. We follow this strategy in order to initially check the quality of the object and

obtain a good initial estimation R0 of the rotation1 for subsequent prototype matching,

as already indicated in Section 5.3. A suitable initial value t1 for the translation vector

is the di�erence between the barycenters of the points yi and the masterpiece

t1 ∶=
1

n

n

∑
i=1

yi −
1

l

N

∑
i=1

sili,

where si is the barycenter of tr(γi), li ∶= len(γi) and l ∶= ∑N
i=1 li

We can now compute the best approximating points xi of yi with respect to the set

M ∶= R0tr(γ) + t1. Since γ is an arc spline, M is also the trace of an arc spline γ(1) ∶=
γ
(1)
1 ⋯γ(1)

N . The correspondence between a point yi and a segment γ
(1)
j can be quickly

and e�ciently determined, for instance, by a (transformed) tree structure like a quadtree

decomposition2, which can be established beforehand. The best approximating point xi

of yi to the nearest circular segment γ
(1)
j can be calculated by intersecting tr(γ(1)

j ) with
the line segment de�ned by yi and the center of C(γ(1)

j ), and it is therefore very cheap in

comparison to parametric curves, which need iterative strategies. If the nearest segment

γ
(1)
j is a line segment, we only have to compute the orthogonal projection of yi on γ

(1)
j .

Using the abbreviation

x̃i ∶=
⎛
⎜
⎝

0 −1

1 0

⎞
⎟
⎠
xi for all i = 1, . . . ,m

1If the contour is not cyclic, an initial value can be found by matching the starting and endpoints.

2e.g. [26], Chapter 14: Quadtrees: pp. 291 - 306
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and denoting the barycenters of x1, . . . , xm and y1, . . . , ym by

sx ∶=
1

m

m

∑
i=1

xi and sy ∶=
1

m

m

∑
i=1

yi,

the optimal values s1, c1 ∈R and t1 ∈R2, i.e.

m

∑
i=1

∥Tc1,s1,t1(xi) − yi∥
2 = min

s,c∈R,t∈R2

m

∑
i=1

∥Tc,s,t(xi) − yi∥2

can be derived in a closed form:

c1 =
1

ρ

m

∑
i=1

yi(xi − sx)Tyi, s1 =
1

ρ

m

∑
i=1

yi(x̃i − sx)Tyi,

where ρ = ∑m
i=1 ∥xi∥

2
, and the optimal translation is given by t1 = sy −Ac1,s1sx. The value

E ∶= ∑m
i=1 ∥Tc1,s1,t1(xi) − yi∥

2
indicates the �tting quality.

Again, we can compute the best approximating points x
(2)
i of yi with respect to

Tc1,s1,t1(tr(γ(1))) =∶ tr(γ(2))

and solve the least squares problem as above. We carry on with this alternating proce-

dure while E is greater than a given threshold C or the di�erence between the predecessor

error and the current error is not too small. Assuming that the algorithm has termi-

nated in the k-th iteration step, we can additionally check if dist(yi, tr(γ(k))) > ε for

some i = 1, . . . , n and ε > 0 in order to guarantee a good dimension accuracy satisfying

the quality of the product. If E is still larger than a given tolerance, the object doesn't

ensure the quality requirements and has to be sorted out.
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5.5 Curve Approximation

Fitting data by parametric curves1 is used in Pattern Recognition, Image Processing and

many other industrial applications. While most curve �tting algorithms try to construct

a smooth curve passing through or near the given points of the curve which has to be

approximated, in the �eld of Computer Aided Geometric Design it is often desirable to

�t a point set by a curve, which has a convenient shape, close to the points (e.g. [83]).

Furthermore, the curvature plot of the �tting curve should consist of as few as possible

monotone pieces ([36]). As already seen, arc splines satisfy all these criteria.

Approximating data by curves of higher order has been investigated extensively for a

couple of decades (cf. [58, 59, 60, 46, 63, 70, 84]). With the capability of represent-

ing free form curves in a uni�ed way, NURBS have become the de facto standard in

Computer Aided Design (e.g. [35]). Therefore, most of the CAD models of working

pieces are designed in NURBS. In contrast to their �exibility in shape modeling, point

to curve distances cannot be computed in closed form for NURBS-curves. Compared

to arc splines, the computation of distances from NURBS is quite slow. Thus, dealing

with NURBS in pose estimation and prototype �tting algorithms is clumsy. Therefore,

it is desirable to approximate the original CAD-layout by (smooth) arc splines. One

possibility for approximation with arc splines is sampling the original curve, designing

an o�set channel and then computing a minimum arc path.

For instance, Figure 87 depicts the point list of a s-shaped curve and approximations

by a continuous minimum arc path. The curve, which is taken from [62], is enclosed in

a 200px x 300px rectangle and is sampled by 612 points.

In Section 1.3 we have seen that there already exist some approaches to the approxima-

tion of curves by arc splines. The smooth arc spline interpolation problem on a closed

point set was �rst proposed by Hoschek ([49]) in 1992. Given n > 2 di�erent points with

a certain order, a closed smooth arc spline is required to be built in order to connect

those points in the given order. This approach has recently been improved by Chen et al.

([21]). There are numerous approaches to approximation and interpolation by smooth

arc splines based on biarc techniques. We just want to mention three of them: Yang

and Du ([81]) use techniques from optimization theory to approximate planar digitized

curves by arc splines. A (smooth) arc spline which is bounded by a maximum approxi-

1This overview follows [83].
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Figure 87: Input point set with 612 pixel positions and approximations with tolerance 10, 1 and 0.1

pixels.

mation error given by an arbitrary tolerance but without any control of the number of

segments is constructed. In [82] Yang et al. presented an algorithm for approximating

arbitrary types of smooth parametric curves, which is based on interpolation with biarcs

within a given tolerance. Furthermore, Drysdale et al. [33] presented an O(n2 logn) al-
gorithm for approximating a polygonal curve with n vertices by an arc spline with a

minimum number of circular arcs. Given a sequence of points and tangent directions,

computing a smooth approximation with the minimum number of biarcs results in a

runtime complexity of O(n2 log2 n).

However, the interpolation case as well as the approaches mentioned above force the

breakpoints of their solutions to be original points. Even more, the biarc techniques

need additional tangent data. This has a huge impact on the number of segments the

resulting arc spline possesses. For instance, Figure 88 shows the plot of the sine-curve

restricted to the interval [0,6] and approximations at four di�erent tolerance levels

computed with our method. Due to the algorithm suggested by Yang, we sampled

the sine-curve and then constructed a start-destination channel providing the desired

maximum tolerance error. Table 5.2 compares the results obtained by the method of

Yang and by computing a smooth minimum arc path.

Number of Approximation tolerance

segments 10−1 10−2 10−3 10−4

Yang - - 23 45

Ours 2 6 12 29

Table 5.2: Approximation of the sine-curve segment de�ned on the interval [0,6].
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Figure 88: Plot (bottom) and approximation of the sine curve segment by smooth arc splines with

maximum error 10−4, 10−3, 10−2 and 10−1.
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6
RÉSUMÉ AND FURTHER WORK

6.1 Overview and Main Results

In this thesis, we have developed an approach to approximating two-dimensional point

data by smooth arc splines within a start-destination channel. The main aim was to

supply a fundamental mathematical characterization of circular visibility and (smooth)

minimum arc paths which arises as a natural generalization of minimum link paths.

Similar to minimum link paths, a minimum arc path of a start-destination channel

is not generally unique, but the minimum number of segments is naturally unique.

We have worked out a constructive solution for computing a (smooth) minimum arc

path, and we have shown that there is a minimum arc path which consists of segments

having a special con�guration of alternating restrictions. Alternating sequences and

feasible direction cones have turned out to be the key instruments for characterizing

them e�ciently. For this purpose, it was essential that circular arcs have three degrees

of freedom, which results in the fact that blocking arcs have an alternating sequence

of length 3. The concept of feasible direction cones and their continuity properties was

crucial for �nding an e�ective condition for an arc to be joined smoothly.

`The outcome of any serious research can only be

to make two questions grow where only one grew before.'

(Thorstein Veblen, Norwegian-American economist)
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Our theoretical results even hold for start-destination channels given by piecewise ana-

lytically extended Jordan curves and enable the design of a greedy algorithm. However,

in the presentation of our algorithmic approach we focused on polygons as bounding

channels. In that case, we gave an e�cient method based on the iterative use of CVDs,

which led us to a quadratic algorithm. As indicated in Chapter 4 and 5, this algorithm

is mostly sub-quadratic in practice.

The algorithms introduced can be used for a wide range of applications, as seen in

Chapter 5. We have discussed some possibilities for the development of a suitable

channel, which is important for modeling a speci�c application example. But in the

end, the choice of suitable channels depends very much on real applications. In turn,

the great advantage of our method is that it works for every tolerance channel and does

not depend on any geometric details (cf. Algorithm 1). In case the bounding curve ωK

is not a polygon, a good strategy has to be developed in order to construct the blocking

arcs. However, these approaches might not be as e�cient as in case of a polygonal

channel.

Altogether, we have solved a problem based in the �eld of Approximation and Compu-

tational Geometry with methods of Set-Valued Analysis and Nonlinear Approximation

Theory. We have focused on applications in Computer Aided Design, Computer Vision

and Graphics.

Clearly, this thesis can only be an extract of all possibilities and challenges in the context

of approximation tasks with arc splines, approaches to curve approximation and Reverse

Engineering tasks. Both the theoretical and the practical part could be generalized

and extended, and there are still some interesting and unsolved problems. Therefore,

we conclude by mentioning a few research avenues for future work which seem to be

particularly important and promising.
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6.2 Possible Future Work and Open Problems

Among others, a more detailed investigation of the cyclic case and algorithmic improve-

ments in case of non-polygonal channels are interesting challenges. Furthermore, the

generalization to conic splines as well as arc splines in three dimensions lends itself to a

natural extension of this thesis.

Even in three dimensions, the simple but powerful class of arc splines o�ers a number

of remarkable advantages, (cf. [71]): The o�set of an arc spline in three dimensions

has a simple, closed-form parameterization consisting of segments of tori and cylinders

(cf. [11]). Thus, arc splines also provide a quick and non-iterative method for closest

point computation in space. For a set of given points in R3, the best approximating

points on the curve can be computed by solving quadratic equations. As already seen

in the planar case, for polynomial or rational spline curves, the same problem leads to

non-linear optimization problems, which require iterative solution techniques. Due to

Wang et al. ([77]), arc spline curves are very useful for sweep surface modeling since

they provide high-quality approximations of rotation-minimizing frames.

Research on arc splines in three dimensions is currently being very active (e.g. [80, 71]).

A generalization of our results regarding arc splines in space would probably make a

considerable contribution to this �eld of research. However, certain questions are likely

to arise

� How must be tolerance channels de�ned?

� What are the starting and continuation conditions?

� What is the analogue to left and right restriction in space in order to generalize

alternating sequences for this purpose?

Such questions would have to be answered in advance.

Another important extension of arc splines are conic splines, which are simple or Jordan

curves composed of conic segments, i.e. non-empty, connected and compact subsets of

conics (cf. Section 2.1). A conic spline is called smooth if it has a C 1-parametrization.

Each segment can be represented by both an algebraic curve segment or a rational

Béziers curve (cf. [34]). As one main defect of arc splines is that their curvature func-

tion is not continuous, they can hardly be used for high quality shape modeling. In
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s

a1

a2

a3
a4a5

Figure 89: Hyperbola segment in polygonal channel with alternating sequence (a1, . . . , a5) of length 5.

The dashed curve indicates the second branch of the corresponding hyperbola.

contrast, conic splines and surfaces own many elegant properties which make them a

powerful tool for shape modeling ([71]). Thus, many research contributions deal with

the approximation of points and curves by conic splines. Some recently published papers

are [83], [5], [40] and [39].

A promising approach to approximating planar point lists and curves by (smooth) conic

splines would be (smooth) minimum conic paths, which can be de�ned analogous to

(smooth) arc paths. However, we cannot transfer the methods proposed in this thesis

to conic visibility directly since conics are not connected in general. Nevertheless, as

conics have �ve degrees of freedom1, the following conjecture seems reasonable:

Blocking conic segments have an alternating sequence of length 5 (cf. Figure 89).

It is not clear at all if feasible direction cones, de�ned in the same way as for arc splines,

are connected in terms of conic visibility. Besides, the necessity of examining alternating

sequences of length 5 probably increases the computational complexity compared to

minimum arc paths.

1A conic segment can be uniquely determined by �ve distinct points or by three points and two tangent

directions.
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LIST OF SYMBOLS

General Notation

∶= `is de�ned as'

N set of natural numbers (0 ∈N)

Z ring of integers

R �eld of real numbers

C �eld of complex numbers

R(z) real part of z

I(z) imaginary part of z

arg(z) argument of z

A ⊂ B A is a subset of B

∂A boundary of A

Å interior of A

Ari relative interior of A

Ext(A) extremal points of A

card (A) cardinality of A

P(A) power set of A

S1 unit sphere of R2

⟨⋅∣ ⋅⟩ standard scalar product

∥⋅∥ euclidean norm

Bε(a) = {x ∈R2 ∣ ∥x − a∥ < ε}

Bε(M) ⋃x∈M Bε(x)

TM(a) tangent cone to M at a

f ∣A restriction f on A

∇f gradient of f

D di�erential operator

Pn(R
m,R) vector space of the real

valued polynomial functions on

R
m of degree at most n

Q set of all quadrics

dist(A,B) euclidean distance of A and B

h Hausdor� metric

K(X) set of all non-empty, compact

subsets of X

C(X) set of all closed subsets of X

OM cf. p.60

PM metric projection

πM cf. p.60

U l, U r cf. De�nition 3.3.5, p.77
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Curves and arc splines

W(R2) oriented curves in R2

≺γ order given by γ

S(γ), E(γ) start, end point of γ

γ1⋯γn juxtaposition of γ1, . . . , γn

γ−1 inverse path of γ

tr(γ) trace of γ

len(γ) length of γ

w(ω, a) winding number of ω

τγ(a) tangent unit vector of γ

at a ∈ tr(γ)
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